
 Shell Programming I

 Page 1

Arithmetic

Use the expr command to perform calculations:

e.g. $ x=8

 $ y=5

 $ expr $x + $y (note that spaces required either side of + sign)

13

Take care with * as this has another meaning in the shell – i.e.
$ expr $x "*" $y

Read/Arithmetic Example Script

$ nano addition

Take two numbers from the user and print their sum

echo Enter the first number

read num1

echo Enter the second number

read num2

echo

echo The sum is:

expr $num1 + $num2

$ chmod +x addition

$./addition

Decision Control

Use the if/then/else/fi commands.

The general format is:

if [condition] (note that spaces required either side of square brackets)
then

 commands

else (else part is optional)

 commands

fi

Decision control Example Script

$ nano rmfiles

This script removes all files in the ~/temp directory

echo "This will remove all files in the temp directory!"

echo "Are you sure (y/n)?"

read response

if [$response = "y"]

then

 rm ~/temp/*

 echo Files removed

 Shell Programming I

 Page 2

else

 echo Not removed

fi

$ chmod +x rmfiles

$./rmfiles

More on Conditions

For comparing strings, use

= equals (surrounded by spaces)

!= not equals

For comparing integers, use:

-eq equal to

-ne not equal to

-lt less than

-le less than or equal to

-gt greater than

-ge greater than or equal to

Example: This script tells if there are more than 50 users logged on

numusers=`who|wc –l`

if [$numusers –gt 50]

then

 echo “More than 50 users!”

fi

Note: The case instruction provides an alternative kind of decision control.

Loops:

Programming languages have loop constructs to allow a block of code to be executed

repeatedly, either a fixed number of times, or while some condition holds.

while instruction general format

while [condition]

do

 commands

done

Example: The following script prints all numbers from 1 to 100

Prints all numbers from 1 to 100

num=1

while [$num -le 100]

do

 echo $num

 num=`expr $num + 1`

done

 Shell Programming I

 Page 3

An alternative is to use the until statement

e.g replace the 4
th

 line above with until [$num –gt 100]

Another kind of loop is the for loop

General format:

for var in varlist

do

 commands

done

The for statement executes the commands once for each value in the list

for example 1

prints the numbers from 101 to 105

for num in 1 2 3 4 5

do

 expr $num + 100

done

for example 2

removes all Java source files in current directory. Use with care!

for filename in *.java

do

 rm $filename

done

Other Shell Programming Examples

For more examples, you might like to look at either of the following URLs:

 http://www.shelldorado.com/

 http://www.tldp.org/LDP/Bash-Beginners-Guide/html/

Other shell languages

The default shell on Linux is called bash (stands for “Bourne-again shell” as it was designed

to replace the “Bourne shell” in Unix).

You can verify that you are running the bash shell by typing echo $SHELL.

Note that some systems may run a different shell by default. Different shells have different

shell programming syntax and a script written for bash might not necessarily work on a

different shell (e.g. the original Bourne shell - you can run that shell by typing sh).

http://www.shelldorado.com/
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/

