
Scope of variables, Printing and
Compound Assignment Statements

Produced
by:

Department of Computing and Mathematics
http://www.wit.ie/

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor

Topics list

1. Use of println(), text() in Processing

2. Variable Scope

3. Compound Assignment Statements

println() and text() in Processing

• To print a message to the console in Processing, use:
– print()
– println()

• Both take a String as input,
– (more on this in later lectures).

• To print onto the display window, use:
– text()

println() and text() in Processing

println()

Each
statement
prints the

same output.

println()

We can use
variables in

the print
statement.

text() in Processing

• text() is used to draw text on the display window.
textSize(32);
text("word", 10, 30);

fill(0, 102, 153);
text("word", 10, 60);

fill(0, 102, 153, 51);
text("word", 10, 90);

Text to be written
(also in String format)

x, y co-ordinates on screen

Topics list

1. Use of println(), text() in Processing

2. Variable Scope

3. Compound Assignment Statements

Recap: Processing Example 2.8
Functionality:
– Draw a circle on the mouse (x,y) coordinates.

– Each time you move the mouse,
draw a new circle.

– All the circles remain in the sketch
until you press a mouse button.

– When you press a mouse button,
the sketch is cleared and a single circle
is drawn at the mouse (x,y) coordinates.

Recap: Processing Example 2.8

Recap: Processing Example 2.8

In this example,
we have “hard coded”

the value of 100
for the diameter

of the circle.

Processing Example 2.9

Here, we have replaced
the “hard coded” 100 with

a variable diameter,
whose value is 100.

Local Scope – diameter variable
• The diameter variable is declared in the draw() function

i.e. it is a local variable.
i.e. it is local to the draw() function.

• It is only “alive” while the draw() function is running.

Local Scope – diameter variable

• Each time the draw() function:
– finishes running, the diameter variable is destroyed.
– is called, the diameter variable is re-created.

Local variables – scope rules
• The scope of a local variable is the block it is declared in.

A block is delimited by the curly braces {}.
• A program can have many nested blocks.

int number = int(random(40)); //This gives a random
//number between (and
//including) 0 and 39.

if (number < 10)
{
int j = 40;
println(“number is : " + number + " and j is : " + j);
}

else if (number >=10)
{
int x = 30;
println(“number is : " + number + " and x is : " + x);

}

Outer block
– number is available here

Two inner blocks
– number is available in both.

Each has its own local variable too.
First block has j,
Second block has x.

Local variables – scope rules

• The lifetime of a local variable is
the time of execution, of the block it is declared in.

• Trying to access a local variable outside its scope
will trigger a syntax error e.g.:

void draw()
{

if (mousePressed)
{

int diameter = 100;
background(0);

}
ellipse(mouseX, mouseY, diameter, diameter);

}

Syntax Error

Processing Example 2.10

Using our 2.9 code,
we now want to

reduce the diameter size by 10
each time the mouse is pressed.

Q: Is this correct?

Processing Example 2.10
A: We have a bug in our logic (logic error).

As the diameter variable is re-created each
time draw() is called,
its value will be reset to 100
and will lose our previous decrement of 10.

Our circle will keep resetting itself to a
diameter of 100.

Global variables – scope rules!

• The scope of the diameter variable is too narrow;
– as soon as draw() finishes running,

the local variable is destroyed and we loose all data.
– when draw() is called again,

the diameter variable is recreated and its value is set to 100.

• We need a diameter variable that lives for the lifetime of a sketch i.e.
– a global variable.

Processing Example 2.11
Let’s try fix the bug!

We established that the
scope of the local

diameter variable was
too narrow;

diameter is recreated
each time draw() is

called and its value is
set to 100.

Let’s try fix the bug!

We established that the
scope of the local

diameter variable was
too narrow;

diameter is recreated
each time draw() is

called and its value is
set to 100.

Comment out the local
diameter variable and

Let’s try fix the bug!

We established that the
scope of the local

diameter variable was
too narrow;

diameter is recreated
each time draw() is

called and its value is
set to 100.

Comment out the local
diameter variable and
instead make it global

scope.

Processing Example 2.11
But we still have a bug!

The diameter variable is
decreased each time we

press the mouse.
Correct!

Q: However, what
happens when the

mouse pressing reduces
the value of diameter to

zero?

Processing Example 2.11

Mouse
presses over
time…

But we still have a bug!

We can see that the diameter variable is decreased
as we press the mouse…

however, when it reaches zero,
the diameter of the circle starts growing!

Processing Example 2.11

Mouse
presses over
time…

What is happening?

The width and height in the ellipse function are
absolute values (negative sign is dropped).

So, even though diameter had a value of say, -50,
the magnitude is all that is used
when drawing the ellipse…i.e. 50.

Processing Example 2.12
In the ellipse function,
the width and height are absolute values
(negative sign is dropped).

To handle this logic bug,
we need to stop reducing the diameter by 10
when we reach a certain value, say 20.

Processing Example 2.12

When you run this code,
it appears the reduction is larger than 10
when we press the mouse?

Why?
The default frame rate is 60 refreshes of the
screen per second
i.e. draw() is called 60 times per second.

You can change the frame rate by calling
the frameRate() function.

Topics list

1. Use of println(), text() in Processing

2. Variable Scope

3. Compound Assignment Statements

Compound Assignment Statements

Full statement Shortcut

Mathematical shortcuts

x = x + a; x += a;
x = x - a; x -= a;
x = x * a; x *= a;
x = x/a; x /=a;

Increment shortcut x = x+1; x++;
Decrement shortcut x = x - 1; x--;

Questions?

