
Classes and Objects

Produced
by:

Department of Computing and Mathematics
http://www.wit.ie/

An introduction

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor

TOPICS

1. Classes & Objects
2. Properties (fields, variables, attributes) &

Methods (functions)
3. Dot
4. Creating your first class – Spot
5. Constructors
– Default
– Parameters
– Overloading

Classes and Objects

• A class
– defines a group of related methods (functions)

and fields (variables / properties).

Classes and Objects

• An object
– is a single instance of a class
– i.e. an object is created (instantiated) from a class.

String a;String is the Class

“Hello”
a is the Object,

which contains “Hello”

&FFCC

&FFCC

Classes and Objects – 1) Building Analogy

• A class is like a blueprint for a building.

Classes and Objects – 1) Building Analogy

• An object is a building constructed from that
blueprint.

Classes and Objects – 1) Building Analogy

• You can build lots of (buildings) objects
from a single blueprint.

Classes and Objects – 2) Cake Analogy

• A class is like a recipe for a cake.

Classes and Objects – 2) Cake Analogy

• An object is the cake baked from that recipe.

Classes and Objects – 2) Cake Analogy

• You can bake lots of (cakes) objects
from a single recipe.

Classes and Objects – Many Objects

• Many objects can be constructed, from a single class definition.

• Each object must have a unique name, within the program.

Source: Reas & Fry (2014)

TOPICS

1. Classes & Objects
2. Properties (fields, variables, attributes) &

Methods (functions)
3. Dot
4. Creating your first class – Spot
5. Constructors
– Default
– Parameters
– Overloading

Methods (functions) and Fields (variables/properties)

• Objects are typically related to real-world artefacts.

• In object-oriented programming (e.g. Java),
you model an object
by grouping together
related methods (functions)
and fields (variables).

Source: Reas & Fry (2014)

Object example: Apple

Source: Reas & Fry (2014)

Object Name Apple

Fields (variables, properties) color
weight

Methods (functions)
grow()
fall()
rot()

Object example: Butterfly

Source: Reas & Fry (2014)

Object Name Butterfly

Fields (variables, properties) species
gender

Methods (functions) grow()
flapWings()
land()

Object example: Radio

Source: Reas & Fry (2014)

Object Name Radio
Fields (variables, properties) frequency

volume
Methods (functions) turnOn()

tune()
setVolume()

Object example: Car

Source: Reas & Fry (2014)

Object Name Car
Fields (variables, properties) make

model
color
year

Methods (functions) accelerate()
brake()
turn()

Returning to the Apple Example

Source: Reas & Fry (2014)

Object Name Apple

Fields (variables, properties) color
weight

Methods (functions)
grow()
fall()
rot()

Returning to the Apple Example

Source: Reas & Fry (2014)

Object Name Apple
Fields
(variables, properties)

color
weight

Methods
(functions)

grow()
fall()
rot()

Object Type

Returning to the Apple Example

Source: Reas & Fry (2014)

Object Name Apple
Fields
(variables, properties)

color
weight

Methods
(functions)

grow()
fall()
rot()

Properties / Attributes

Returning to the Apple Example

Source: Reas & Fry (2014)

Behaviours

Object Name Apple
Fields
(variables, properties)

color
weight

Methods
(functions)

grow()
fall()
rot()

Apple Class
• To make a “blue print” of an Apple:

• The grow() method

– might have inputs/parameters
for temperature and moisture.

– can increase the weight field of the apple
based on these inputs.

Apple
color
weight
grow()
fall()
rot()

Source: Reas & Fry (2014)

Apple Class
• To make a “blue print” of an Apple:

• The fall() method

– can continually check the weight
and cause the apple to fall to the ground
when the weight goes above a threshold.

Apple
color
weight
grow()
fall()
rot()

Apple Class
• To make a “ blue print” of an Apple:

• The rot() method could then take over,
– beginning to decrease the value of the weight field
– and change the color fields.

Apple
color
weight
grow()
fall()
rot()

Source: Reas & Fry (2014)

Apple Object(s)

• We saw earlier that:
–An object
• is created (instantiated) from a class.

–A class
• can have many objects created from it.

– Each object
• must have a unique name within the program.

Source: Reas & Fry (2014)

Apple Object(s)

Apple
color
weight
grow()
fall()
rot()

Source: Reas & Fry (2014)

Class

color

weight

red

6.2

gala

color

weight

yellow

8.4

goldenDelicious

Two objects. Each has a unique name
and it’s own copy (values) of the fields.

Object State

Source: Reas & Fry (2014)

color

weight

red

6.2

gala

color

weight

yellow

8.4

goldenDelicious

There are two objects of type Apple.

Each has a unique name:
gala
goldenDelicious

Each object has a different object state:

• Each object has it’s own copy of the
fields (color and weight) in memory.

• Each object has it’s own data stored
in these fields.

TOPICS

1. Classes & Objects
2. Properties (fields, variables, attributes) &

Methods (functions)
3. Dot
4. Creating your first class – Spot
5. Constructors
– Default
– Parameters
– Overloading

Using an Object’s fields and methods

• The fields and methods of an object are accessed
with the dot operator i.e. external calls.

gala.grow() Runs the grow() method inside the gala object.
goldenDelicious.fall() Runs the fall() method inside the goldenDelicious object.

Source: Reas & Fry (2014)

FIE
LD

S
M

ET
HO

DS

gala.color Gives access to the color value in the gala object.
goldenDelicious.color Gives access to the color value in the goldenDelicious object.

object.property
object.method

TOPICS

1. Classes & Objects
2. Properties (fields, variables, attributes) &

Methods (functions)
3. Dot
4. Creating your first class – Spot
5. Constructors
– Default
– Parameters
– Overloading

Creating your first class

• We are going to start with sample code that draws a white
spot on a black background.

• We will refactor this code by:
– writing a class
• that will draw and format this spot.

Source: Reas & Fry (2014)

Sample Code

float xCoord = 33.0;
float yCoord = 50.0;
float diameter = 30.0;

void setup(){
size (100,100);
noStroke();

}

void draw(){
background(0);
ellipse(xCoord, yCoord, diameter, diameter);

}
Source: Reas & Fry (2014)

Creating your first class

• A class creates a unique data type.

• When creating a class, think carefully about what you want the
code to do:
1. What are the attributes?

2. What are the behaviours?

Source: Reas & Fry (2014)

First, we will start by:
listing the attributes (fields/variables/properties)
and figure out what data type they should be.

Creating your first class –
identifying the fields (attributes, properties)

float xCoord = 33.0;
float yCoord = 50.0;
float diameter = 30.0;

void setup(){
size (100,100);
noStroke();

}

void draw(){
background(0);
ellipse(xCoord, yCoord, diameter, diameter);

}

Source: Reas & Fry (2014)

Q: What fields do we need to model the spot?

Note:

fields are the attributes/properties of the object
we are modelling.

Creating your first class –
identifying the fields

float xCoord = 33.0;
float yCoord = 50.0;
float diameter = 30.0;

void setup(){
size (100,100);
noStroke();

}

void draw(){
background(0);
ellipse(xCoord, yCoord, diameter, diameter);

}

Source: Reas & Fry (2014)

A: The required fields (attributes) are:

float xCoord (x-coordinate of spot)

float yCoord (y-coordinate of spot)

float diameter (diameter of the spot)

Creating your first class –
giving our new class a name

• The name of a class should be carefully considered
and should match its purpose.

• The name can be any word or words.
• It should begin with a capital letter
• It should not be pluralised.
• For our first class, we could use names like:
– Spot
– Dot
– Circle, etc.

• We will call our first class, Spot.
Source: Reas & Fry (2014)

Spot Class – Version 1.0

Source: Reas & Fry (2014)

Spot sp;

void setup(){
size (100,100);
noStroke();
sp = new Spot();
sp.xCoord = 33;
sp.yCoord = 50;
sp.diameter = 30;

}

void draw(){
background(0);
ellipse(sp.xCoord, sp.yCoord, sp.diameter, sp.diameter);

}

class Spot
{

float xCoord, yCoord;
float diameter;

}

class Spot
{

float xCoord, yCoord;
float diameter;

}

Spot Class – Version 1.0

Source: Reas & Fry (2014)

Defining the class

Declaring the fields
in the class

In the PDE, place this code in
a new tab, called Spot

Spot Class – Version 1.0

Source: Reas & Fry (2014)

Spot sp;

void setup(){
size (100,100);
noStroke();
sp = new Spot();
sp.xCoord = 33;
sp.yCoord = 50;
sp.diameter = 30;

}

void draw(){
background(0);
ellipse(sp.xCoord, sp.yCoord,

sp.diameter, sp.diameter);
}

Declaring an object sp,
of type Spot.

class Spot
{

float xCoord, yCoord;
float diameter;

}

Spot Class – Version 1.0

Source: Reas & Fry (2014)

Spot sp;

void setup(){
size (100,100);
noStroke();
sp = new Spot();
sp.xCoord = 33;
sp.yCoord = 50;
sp.diameter = 30;

}

void draw(){
background(0);
ellipse(sp.xCoord, sp.yCoord,

sp.diameter, sp.diameter);
}

Declaring an object sp,
of type Spot.

Calling the Spot()
constructor to build the
sp object in memory.

class Spot
{

float xCoord, yCoord;
float diameter;

}

Spot Class – Version 1.0

Source: Reas & Fry (2014)

Spot sp;

void setup(){
size (100,100);
noStroke();
sp = new Spot();
sp.xCoord = 33;
sp.yCoord = 50;
sp.diameter = 30;

}

void draw(){
background(0);
ellipse(sp.xCoord, sp.yCoord,

sp.diameter, sp.diameter);
}

Declaring an object sp,
of type Spot.

Calling the Spot()
constructor to build the
sp object in memory.

Initialising the fields in
the sp object with a
starting value.

class Spot
{

float xCoord, yCoord;
float diameter;

}

Spot Class – Version 1.0

Source: Reas & Fry (2014)

Spot sp;

void setup(){

size (100,100);

noStroke();

sp = new Spot();
sp.xCoord = 33;
sp.yCoord = 50;
sp.diameter = 30;

}

void draw(){

background(0);
ellipse(sp.xCoord, sp.yCoord,

sp.diameter, sp.diameter);
}

Declaring an object sp, of type Spot.

Calling the Spot() constructor
to build the sp object in memory.

Initialising the fields in the sp object

with a starting value.

Calling the ellipse method,

using the fields in the sp object as arguments.

class Spot
{

float xCoord, yCoord;

float diameter;
}

TOPICS

1. Classes & Objects
2. Properties (fields, variables, attributes) &

Methods (functions)
3. Dot
4. Creating your first class – Spot
5. Constructors
– Default
– Parameters
– Overloading

Constructors

Spot sp;

null

sp = new Spot();

xCoord

yCoord

0.0

0.0

sp

diameter 0.0

sp sp
&FFCC

&FFCC

Declares an sp object variable
initialised to null by default

new calls the
constructor to
allocate the object
in memory and
initialise it’s fields

Constructors
Spot sp;
sp = new Spot();

The sp object
is constructed with
the keyword new.

Spot() is the default constructor
that is called to build the sp object
in memory.

Spot()
{
}

A CONSTRUCTOR
is a method that has the same name as the class
but has no return type.

TOPICS

1. Classes & Objects
2. Properties (fields, variables, attributes) &

Methods (functions)
3. Dot
4. Creating your first class – Spot
5. Constructors
– Default
– Parameters
– Overloading

Default Constructor

class Spot
{

float xCoord;
float yCoord;
float diameter;

//Default Constructor
Spot()
{
}

}

The default constructor has
an empty parameter list.

Default Constructor

class Spot
{

float xCoord;
float yCoord;
float diameter;

//Default Constructor
Spot()
{
}

}

• If you don’t include a constructor
in your class,
the compiler inserts a default one
for you in the background

(i.e. you won’t see it in your code).

Default Constructor

class Spot
{

float xCoord;
float yCoord;
float diameter;

//Default Constructor
Spot()
{
}

}

Here, the Spot()
default constructor
simply constructs the object.

Default Constructor

class Spot
{

float xCoord;
float yCoord;
float diameter;

//Default Constructor
Spot()
{
}

}

The constructor stores
initial values in the fields.

xCoord

yCoord

0.0

0.0

sp

diameter 0.0

sp

Writing our first constructor

We now know that constructors
store initial values
in the fields of the object:
• They often receive external

parameter values for this.

Spot sp;

void setup(){
size (100,100);
noStroke();
sp = new Spot();
sp.xCoord = 33;
sp.yCoord = 50;
sp.diameter = 30;

}

void draw(){
background(0);
ellipse(sp.xCoord, sp.yCoord,

sp.diameter, sp.diameter);
}

Writing our first constructor

In this code, we initialized:

• xCoord
• yCoord
• diameter

after calling the Spot() constructor.

Spot sp;

void setup(){
size (100,100);
noStroke();
sp = new Spot();
sp.xCoord = 33;
sp.yCoord = 50;
sp.diameter = 30;

}

void draw(){
background(0);
ellipse(sp.xCoord, sp.yCoord,

sp.diameter, sp.diameter);
}

TOPICS

1. Classes & Objects
2. Properties (fields, variables, attributes) &

Methods (functions)
3. Dot
4. Creating your first class – Spot
5. Constructors
– Default
– Parameters
– Overloading

Writing our first constructor
We want to write a new
constructor that will take three
parameters
• xPos
• yPos
• diamtr

These values will be used to
initialise the
• xCoord,
• yCoord
• diameter
fields.

Spot sp;

void setup(){
size (100,100);
noStroke();
sp = new Spot();
sp.xCoord = 33;
sp.yCoord = 50;
sp.diameter = 30;

}

void draw(){
background(0);
ellipse(sp.xCoord, sp.yCoord,

sp.diameter, sp.diameter);
}

Writing our first constructor
We want to write a new
constructor that will take three
parameters
• xPos
• yPos
• diamtr

These values will be used to
initialise the
• xCoord,
• yCoord
• diameter
fields.

class Spot
{
float xCoord, yCoord;
float diameter;

Spot(float xPos, float yPos, float diamtr)
{
xCoord = xPos;
yCoord = yPos;
diameter = diamtr;

}
}

Spot Class – Version 2.0

Source: Reas & Fry (2014)

Spot sp;

void setup()
{

size (100,100);
noStroke();
sp = new Spot (33, 50, 30);

}

void draw()
{

background(0);
ellipse(sp.xCoord, sp.yCoord, sp.diameter, sp.diameter);

}

class Spot
{
float xCoord, yCoord;
float diameter;

Spot(float xPos, float yPos, float diamtr)
{
xCoord = xPos;
yCoord = yPos;
diameter = diamtr;

}
}

TOPICS

1. Classes & Objects
2. Properties (fields, variables, attributes) &

Methods (functions)
3. Dot
4. Creating your first class – Spot
5. Constructors
– Default
– Parameters
– Overloading

Overloading Constructors

• We can have as many constructors as our design requires,
ONCE they have unique parameter lists.

• We are overloading our constructors in Version 3.0…

Spot Class – Version 3.0

Source: Reas & Fry (2014)

Spot sp;

void setup()
{

size (100,100);
noStroke();
sp = new Spot(33, 50, 30);

}

void draw()
{

background(0);
ellipse(sp.xCoord, sp.yCoord, sp.diameter, sp.diameter);

}

class Spot{
float xCoord, yCoord;
float diameter;

Spot(){
}

Spot(float xPos, float yPos, float diamtr){
xCoord = xPos;
yCoord = yPos;
diameter = diamtr;

}
}

Spot Class – Version 3.0

Source: Reas & Fry (2014)

class Spot{
float xCoord, yCoord;
float diameter;

Spot(){
}

Spot(float xPos, float yPos, float diamtr){
xCoord = xPos;
yCoord = yPos;
diameter = diamtr;

}
}

Default Constructor
with NO parameters

Spot Class – Version 3.0

Source: Reas & Fry (2014)

class Spot{
float xCoord, yCoord;
float diameter;

Spot(){
}

Spot(float xPos, float yPos, float diamtr){
xCoord = xPos;
yCoord = yPos;
diameter = diamtr;

}
}

A second Constructor with a
(float, float, float) parameter
list.

Questions?

References

• Reas, C. & Fry, B. (2014) Processing – A Programming
Handbook for Visual Designers and Artists, 2nd Edition, MIT
Press, London.

