Classes and Objects

An introduction

Produced Dr. Siobhan Drohan
by: Mr. Colm Dunphy
Mr. Diarmuid O’Connor

Waterford Institute of Technology Department of Computing and Mathematics

W INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/
OF s



TOPICS

1. Classes & Objects

2. Properties (fields, variables, attributes) &
Methods (functions)

3. Dot
4. Creating your first class — Spot
5. Constructors

— Default

— Parameters
— Overloading



Classes and Objects

e A class

[8] string (§va Platform SE X

< C'| & Secure | https://docs.oracle.com/javase/7/docs/api

Overview P« Use Tree Deprecated Index Help

Prev Class [|Next Class Frames No Frames All Classes
Summary: Nesgd | Field | Constr | Method Detail: Field | Constr | Method

— defines a group of related methods (functions)
and fields (variables / properties)

java.lang

Class String

java.lang.Object
java.lang.String

Method Summary

Modifier and Type

Method and Description

char

int

int

int

int

int

String

boolean

boolean

boolean

static String

static String

boolean

boolean

charAt(int index)

Returns the char value at the specified index.

codePointAt(int index)

Returns the character (Unicode code point) at the specified index.
codePointBefore(int index)

Returns the character (Unicode code point) before the specified index.
codePointCount(int beginIndex, int endIndex)

Returns the number of Unicode code points in the specified text range of this String.
compareTo(String anotherString)

Compares two strings lexicographically.

compareToIgnoreCase(String str)

Compares two strings lexicographically, ignoring case differences.
concat(String str)

Concatenates the specified string to the end of this string.
contains(CharSequence s)

Returns true if and only if this string contains the specified sequence of char values.
contentEquals(CharSequence cs)

Compares this string to the specified CharSequence.
contentEquals(StringBuffer sb)

Compares this string to the specified StringBuffer.

copyValueOf(char[] data)

Returns a String that represents the character sequence in the array specified.
copyValueOf(char[] data, int offset, int count)

Returns a String that represents the character sequence in the array specified.
endsWith(String suffix)

Tests if this string ends with the specified suffix.

equals(Object anObject)

Compares this string to the specified object.




Classes and Objects

* An object
— is a single instance of a class

— i.e. an object is created (instantiated) from a class.

String is the Class String a;

& FF&

a is the Object,

which contains “Hello”




Classes and Objects — 1) Building Analogy

214

A class is like a blueprint for a building.

Office

13°x 12'°

i}

44-0

27-4

1/ 2 Wall wiLaminate Top

Stepped up Tile Ledge
Master )
Bath
(Ol®) . W.IC
L
Master
Suite i
13° x 16° to
Below
Sitting
18° x 6'°

Bedroom 2
14%x 12'°

S

Bedroom 3
14°x 10°

Pindow Seat

Porch




Classes and Objects — 1) Building Analogy

 An objectis a building constructed from that

blueprint.
I
SIL]
: &4 SEEESE




Classes and Objects — 1) Building Analogy

* You can build lots of (buildings) objects
from a single blueprint.

==
== fl==
i

I

1

‘._.'»‘




Classes and Objects — 2) Cake Analogy

A class is like a recipe for a cake.

What you need:

e 175g/60z Odlums Cream Plain Flour

e 75g/30z Plain Chocolate (min 70% cocoa)
e 200g/70z Butter

e 175g/60z Shamrock Golden Caster Sugar
e 3 Large Eggs

e 1 teaspoon Baking Powder

e 100g packet Shamrock Ground Almonds
o 2 tablespoons Cocoa, sieved

e 2 tablespoons Milk

e 1teaspoon Goodall's Vanilla Essence

For Chocolate Cream

e 140ml Cream

e 175g/60z Plain Chocolate (min 70% cocoa)

10.

Tlow 10:

Preheat oven to 190°C/375°F/Gas 5. Lightly grease and base line a 23cm/9" deep
sandwich tin.

Break the chocolate into a heatproof bowl. Add 25g/10z of the butter and stand bowl
over a pan of hot water until chocolate has melted.

Meanwhile put the remaining butter, sugar, eggs, flour, baking powder, ground
almonds, cocoa, milk and essence into a large bowl and beat until smooth and

creamy.

Add the melted chocolate and gently stir into the mixture. Transfer to the prepared
tin and level the top.

Bake for about 40 minutes until risen and the surface feels firm to the touch. Remove
from oven. Allow to sit in tin for about 5 minutes, then transfer to a wire tray to cool.

Make the chocolate cream by heating the cream until just bubbling around the edges.
Add the chocolate and gently stir over a low heat until melted. Remove from heat.

Transfer to a bowl to allow to cool and begin to set.
Slice cake horizontally and use half the icing to sandwich the cake.
Spread remaining icing on top and sides of cake.

Serve with raspberries and créme fraiche or Greek yoghurt.




Classes and Objects — 2) Cake Analogy

* Anobjectis the cake baked from that recipe.




Classes and Objects — 2) Cake Analogy

* You can bake lots of (cakes) objects
from a single recipe.




Classes and Objects — Many Objects

 Many objects can be constructed, from a single class definition.

* Each object must have a unigue name, within the program.

Source: Reas & Fry (2014)



TOPICS

1. Classes & Objects

2. Properties (fields, variables, attributes) &
Methods (functions

3. Dot
4. Creating your first class — Spot
5. Constructors

— Default

— Parameters
— Overloading



Methods (functions) and Fields (variables/properties)

* Objects are typically related to real-world artefacts.

* |n object-oriented programming (e.g. Java),
you model an object
by grouping together
related methods (functions)
and fields (variables).

Source: Reas & Fry (2014)



Object example: Apple

Object Name Apple
. . . color
Fields (variables, properties) weight

grow()
Methods (functions) fall()

rot()

Source: Reas & Fry (2014)



Object example: Butterfly

Object Name Butterfly

Fields (variables, properties) |species
gender

Methods (functions) grow()
flapWings()

land()

Source: Reas & Fry (2014)



Object example: Radio

Object Name Radio

Fields (variables, properties) |frequency
volume

Methods (functions) turnOn()
tune()
setVolume()

Source: Reas & Fry (2014)



Object example: Car

Object Name Car

Fields (variables, properties) |make

model
color
year

Methods (functions) accelerate()

brake()
turn()

Source: Reas & Fry (2014)



Returning to the Apple Example

Source: Reas & Fry (2014)

Object Name Apple
. . . color
Fields (variables, properties) weight

grow()
Methods (functions) fall()

rot()




Returning to the Apple Example

(functions)

Object Name Apple
Fields color
(variables, properties) |weight
grow()
Methods fall()

rot()

Object Type

Source: Reas & Fry (2014)



Returning to the Apple Example

(functions)

Object Name Apple
Fields color
(variables, properties) |weight
grow()
Methods fall()

rot()

Properties / Attributes

Source: Reas & Fry (2014)



Returning to the Apple Example

(functions)

Object Name Apple
Fields color
(variables, properties) |weight
grow()
Methods fall()

rot()

Behaviours

Source: Reas & Fry (2014)



Apple Class 5

 To make a “blue print” of an Apple:

* The grow() method Apple

color
— might have inputs/parameters

weight
for temperature and moisture.
grow()
— can increase the weight field of the apple fall()

based on these inputs. rot()

Source: Reas & Fry (2014)



Apple Class

 To make a “blue print” of an Apple:

* The fall() method Apple

color
— can continually check the weight

weight
and cause the apple to fall to the ground row()
when the weight goes above a threshold. g
fall()

rot()




Apple Class §

 To make a “ blue print” of an Apple:

* The rot() method could then take over, Apple

— beginning to decrease the value of the weight field color
— and change the color fields.

weight

grow()
fall()

rot() [+

Source: Reas & Fry (2014)



Apple Object(s)

e We saw earlier that:
— An object

* is created (instantiated) from a class.

— A class

* can have many objects created from it.

— Each object

* must have a unique name within the program.

Source: Reas & Fry (2014)



Apple Object(s)

goldenDelicious

color yellow

Two objects. Each has a unigue name
and it’s own copy (values) of the fields.

Source: Reas & Fry (2014)

Class




Object State

There are two objects of type Apple.

Each has a unique name
gala™
goldenDelicious™

goldenDelicious

Each object has a different object state:

color yellow
. Each objectrhas We weight
fields (color and weightjThmmemory.

* Each object has it’s own data stored
in these fields.

Source: Reas & Fry (2014)



TOPICS

1. Classes & Objects
2. Properties (fields, variables, attributes) &

Methods ifunctionsi

4. Creating your first class — Spot

5. Constructors
— Default
— Parameters
— Overloading



Using an Object’s fields and methods

* The fields and methods of an object are accessed
with the dot operator i.e. external calls.

object.method

Gives access to the color value in the gala object.

Q\?% gala.color
< goldenDelicious.color

Gives access to the color value in the goldenDelicious object.

Runs the grow() method inside the gala object.

5 gala.grow()
§ goldenDelicious.fall()

Runs the fall() method inside the goldenDelicious object.

Source: Reas & Fry (2014)




TOPICS

1. Classes & Objects

2. Properties (fields, variables, attributes) &
Methods (functions)

3. Dot

4. Creating your first class — Spot

5. Constructors
— Default
— Parameters
— Overloading



Creating your first class

 We are going to start with sample code that draws a white
spot on a black background.

@ el e

* We will refactor this code by:

— writing a class

 that will draw and format this spot.

Source: Reas & Fry (2014)



Sample Code

float xCoord = 33.0;
float yCoord = 50.0;
float diameter = 30.0;

r‘s’.:’l —&ﬂ

volid setup(){
size (100,100);
noStroke();

}

volid draw() {
background(0);
ellipse(xCoord, yCoord, diameter, diameter);

}

Source: Reas & Fry (2014)



Creating your first class

* A class creates a unique data type.
* When creating a class, think carefully about what you want the
code to do:

1. What are the attributes?
2. What are the behaviours?

First, we will start by:
listing the attributes (fields/variables/properties)
and figure out what data type they should be.

Source: Reas & Fry (2014)



Creating your first class —
identifying the fields (attributes, properties)

Q: What fields do we need to model the spot?

float xCoord = 33.0;
float yCoord = 50.0;
float diameter = 30.0; Note:

void setup(){ . . . .
e 00 fields are the attributes/properties of the object

noStroke(); we are modelling.
}

void draw(){ @ o e

background(0);
ellipse(xCoord, yCoord, diameter, diameter);
}

Source: Reas & Fry (2014)



Creating your first class —
identifying the fields

A: The required fields (attributes) are:

float xCoord = 33.0;

float yCoord = 50.0; float xCoord (x-coordinate of spot)
float diameter = 30.0;

void setup(){ float yCoord (y-coordinate of spot)
size (100,100);
noStroke();
} float diameter (diameter of the spot)
void draw(){ @ Lol |

background(0);
ellipse(xCoord, yCoord, diameter, diameter);
}

Source: Reas & Fry (2014)



Creating your first class —
giving our new class a name

 The name of a class should be carefully considered
and should match its purpose.

* The name can be any word or words.
* |t should begin with a capital letter

* |t should not be pluralised.

* For our first class, we could use names like:
— Spot
— Dot
— Circle, etc.

We will call our first class, Spot.

Source: Reas & Fry (2014)



Spot Class — Version 1.0

Spot sp;

void setup(){
size (100,100);
noStroke();
sp = new Spot();
sp.xCoord = 33;
sp.yCoord = 50;
sp.diameter = 30;

}

void draw(){
background(0);

}

ellipse(sp.xCoord, sp.yCoord, sp.diameter, sp.diameter);

class Spot

{
float xCoord, yCoord;

float diameter;

J

Source: Reas & Fry (2014)



Spot Class — Version 1.0 -

Defining the class

class Spot

{

Declaring the fields

float xCoord, yCoord; .
<—in the class

float diameter;

J

File Edit Sketch Debug Tools Help

00
spot_version1 o [ SR - In the PDE, place this code i

" a new tab, called Spot

&) float xCoord, yCoord;
¥}  float diameter;

Source: Reas & Fry (2014)



Spot Class — Version 1.0

Declaring an object sp,
of type Spot.

>

Spot sp;

void setup(){

class Spot

{
float xCoord, yCoord;

float diameter;

size (100,100); }

noStroke();

sp = new Spot();
sp.xCoord =
sp.yCoord =
sp.diameter = 30;

}

void draw(){

background(0);
ellipse(sp.xCoord, sp.yCoord,

33;
50;

sp.diameter, sp.diameter);




Spot Class — Version 1.0

Declaring an object sp, |—> Spot sp; ?Iass >pot

of type Spot. o float xCoord, yCoord;
_ VO_' S€ up(){ float diameter;

Calling the Spot() size (100,100); }

constructor to build the noStroke();

sp object in memory. [ sp = new Spot();

sp.xCoord = 33;
sp.yCoord = 50;
sp.diameter = 30;

}

void draw(){
background(0);
ellipse(sp.xCoord, sp.yCoord,
sp.diameter, sp.diameter);




Spot Class — Version 1.0

Declaring an object sp, |—>| Spot sp; ?lass Spot

QLURESRSY d set float xCoord, yCoord;
. VO_I setup( float diameter;

Calling the Spot() size (100,100); |

constructor to build the noStroke();

sp object in memory. [ sp = new Spot();
sp.xCoord = 33;
—o| sp.yCoord = 50;

Initialising the fields in

the sp object with a sp.diameter = 30;
starting value. !
void draw(){
background(0);

ellipse(sp.xCoord, sp.yCoord,
sp.diameter, sp.diameter);




Spot Class — Version 1.0

Declaring an object sp, of type Spot.

Calling the Spot() constructor
to build the sp object in memory.

Spot sp;

void setup(){

class Spot

{
float xCoord, yCoord;

float diameter;

size (100,100); }

noStroke();

sp = new Spot();

Initialising the fields in the sp object
with a starting value.

sp.xCoord =
sp.yCoord =

33;
50;

sp.diameter = 30;

Calling the ellipse method,
using the fields in the sp object as arguments.

}

void draw(){

background(0);
ellipse(sp.xCoord, sp.yCoord,

sp.diameter, sp.diameter);




TOPICS

1. Classes & Objects

2. Properties (fields, variables, attributes) &
Methods (functions)

3. Dot

4. Creating your first class — Spot

. Constructors =
— Default

— Parameters
— Overloading




Constructors

Spot sp;

SP

null

Declares an sp object variable
initialised to null by default

sp = new Spot();

new calls the
SPp constructor to

&FFCC allocate the object

in memory and

initialise it’s fields

xCoord

yCoord

diameter




Constructors

Spot sp;
sp =.new Spot();

/

The sp object Spot() is the default constructor

is constructed with | | that is called to build the sp object
the keyword new. ||in memory.

A CONSTRUCTOR Spot()

is a method that has the same name as the class || {
but has no return type. }




TOPICS

1. Classes & Objects

2. Properties (fields, variables, attributes) &
Methods (functions)

3. Dot

4. Creating your first class — Spot
5. Constructors
=Y

— Default
— Parameters
— Overloading




Default Constructor

class Spot

{

float xCoord;
float yCoord;
float diameter;

//Default Constructor

Spot(em—oou__ | The default constructor has

{ an empty parameter list.

J

J



Default Constructor

class Spot

{ * |f you don’t include a constructor
float xCoord; in your class,
float yCoord; the compiler inserts a default one
float diameter; for you in the background

//Default Constructor
Spot()
{

J
}

(i.e. you won’t see it in your code).



Default Constructor

class Spot

{

float xCoord;
float yCoord;
float diameter;

//Default Constructor

{Spot() Here, the Spot()
} \ default constructor
} simply constructs the object.




Default Constructor

class Spot
{
float xCoord;
float yCoord;
float diameter;

//Default Constructor
Spot()
{

J
J

SP

xCoord

The constructor stores
initial values in the fields.




Writing our first constructor

We now know that constructors
store initial values
in the fields of the object:

* They often receive external
parameter values for this.

Spot sp;

void setup(){

size (100,100);

noStroke();

sp = new Spot();

sp.xCoord =
sp.yCoord =

33;
50;

sp.diameter = 30;

}

void draw(){

background(0);
ellipse(sp.xCoord, sp.yCoord,

}

sp.diameter, sp.diameter);




Writing our first constructor

Spot sp;
void setup(){
In this code, we initialized: size (100,100);
noStroke();
sp = new Spot();
e xCoord sp.xCoord = 33;
. sp.yCoord = 50;
yCOOrd sp.diameter = 30;
* diameter }

. void draw(){
after calling the Spot() constructor. | background(0);

ellipse(sp.xCoord, sp.yCoord,

sp.diameter, sp.diameter);

}




TOPICS

1. Classes & Objects

2. Properties (fields, variables, attributes) &
Methods (functions)

3. Dot
4. Creating your first class — Spot

. Constructors
— Default

m) — Parameters
— Overloading




Writing our first constructor

We want to write a new
constructor that will take three
parameters

* XxPos
* yPos
e diamtr

These values will be used to
initialise the

e xCoord,

e yCoord

* diameter
fields.

Spot sp;

void setup(){

size (100,100);

noStroke();

sp = new Spot();

sp.xCoord =
sp.yCoord =

33;
50;

sp.diameter = 30;

}

void draw(){

background(0);
ellipse(sp.xCoord, sp.yCoord,

sp.diameter, sp.diameter);




Writing our first constructor

We want to write a new
constructor that will take three

class Spot

{

parameters float xCoord, yCoord;
. XPOS Ndiameter;

* yPos
e diamtr

These values will be used to
initialise the

e xCoord,
e yCoord
e diamet
fields.

}

Spot(l float xPos, float yPos, float diamtr|)

{

xCoord = kPos;
yCoord = yPos;
diameterj= diamtr;

}



Spot Class — Version 2.0

Spot sp; Elass Spot

void setup() float x(-:oord, yCoord;

{ float diameter;
size (100,100); .
noStroke(); Spot(float xPos, float yPos, float diamtr)

{

sp = new Spot (33, 50, 30); | ", 014 = xPos;

} yCoord = yPos;
diameter = diamtr;
void draw() }
{ }
background(0);

ellipse(sp.xCoord, sp.yCoord, sp.diameter, sp.diameter);

}

Source: Reas & Fry (2014)



TOPICS

1. Classes & Objects

2. Properties (fields, variables, attributes) &
Methods (functions)

3. Dot
4. Creating your first class — Spot

. Constructors
— Default

— Parameters
m) — Overloading




Overloading Constructors

* We can have as many constructors as our design requires,
ONCE they have unique parameter lists.

 We are overloading our constructors in Version 3.0...



Spot Class — Version 3.0

class Spot{
Spot sp; float xCoord, yCoord;
float diameter;

void setup()

{ Spot(){

size (100,100); }

noStroke(); spot(float xPos, float yPos, float diamtr){
(o) Oat XFOsS, TI0a 0Os, Tloa Iamtr

sp=new Spot(33, 50,30); | >Porl 08t XS Tloaty

} yCoord = yPos;
diameter = diamtr;

Void draw() } lameter lamtr,

{ }

background(0);

ellipse(sp.xCoord, sp.yCoord, sp.diameter, sp.diameter);

}

Source: Reas & Fry (2014)



Spot Class — Version 3.0

class Spot{
float xCoord, yCoord;
float diameter;

Default Constructor Spot(){
with NO parameters }

Spot(float xPos, float yPos, float diamtr){
xCoord = xPos;
yCoord = yPos;
diameter = diamtr;

}

}

Source: Reas & Fry (2014)



Spot Class — Version 3.0

A second Constructor with a

(float, float, float) parameter
list.

class Spot{
float xCoord, yCoord;
float diameter;

Spot(){
}

Spot(float xPos, float yPos, float diamtr){
xCoord = xPos;
yCoord = yPos;
diameter = diamtr;
}
}

Source: Reas & Fry (2014)



Questions?




References

* Reas, C. & Fry, B. (2014) Processing — A Programming
Handbook for Visual Designers and Artists, 2" Edition, MIT
Press, London.




