Game of Pong

V3

Produced Dr. Siobhan Drohan
by: Mr. Colm Dunphy
Mr. Diarmuid O’Connor

Waterford Institute of Technology Department of Computing and Mathematics

W INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/
%’:*,_‘:{m.a

Pong Versions - introduction

v1 - Ball moving from left to right of screen. Can bounce off top or bottom
v2 - Mouse controlling the Paddle

v3 - Collision detection (ball bounces back). Changes made only to PongGame

v4 - Game Over (when 3 lives gone), Score (lives Lost). Output to Console. Changes made only to PongGame.

v5 - Tournament (no of games per tournament default is 5). Changes made only to PongGame.

v6 - new Player class using arrays (no statistics)

v7 - Player class using arrays (with statistics (Tournament Over - highest, lowest, average score))
v8 - JOptionPane for I/0 instead of console

v9 - alternative algorithm using Pythagoras Theorem

Demo of
Pong Game V3.0

Classes in the PongGameV3.0

PongGame

ball
paddle

setup()
draw()

hitPaddle (paddle, ball)

Ball and Paddle classes = no change

In PongGame, draw() is updated to
call the new hitPaddle() method.

hitPaddle uses a collision detection

algorithm

e if the paddle and ball are touching
* returns true

» false otherwise.

Paddle Ball
Xcoord xCoord
yCoord yCoord
paddleHeight diameter
paddleWidth speedX

speedY
Paddle(int, int)
update() Ball(float)
display() updatef()
getXCoord() display()
getYCoord() hit()
getPaddleWidth() getXCoord()
getPaddleHeight() getYCoord()
setPaddleWidth(int) | | 9€tDiameter()
setPaddleHeight(int) | | SetDiameter{(float)

resetBall()

Collision Detection Algorithm used in hitPaddle

Method signature:
boolean hitPaddle (Paddle paddle, Ball ball)

Algorithm:
1) Measure the size of the gap between the paddle and the ball.

2) If the ball is too far away from the Paddle on the X axis to have a collision
- return false

3) If the ball is too far away from the Paddle on the Y axis to have a collision
- return false

4) Otherwise
- return true.

Recap — Drawing Modes: ellipse

 The default ellipse mode is CENTER

— This means x & y positions for ellipse()
specify the center of the ellipse

— At the max width of the window,
half the ellipse is seen

— If we specify an x value > width + radius of the circle

the circle has left the screen D.

Recap — Drawing Modes: rect

e The default rect mode is CORNER

— This means x & y positions for rect()
specify the top left CORNER of the rectangle

— At the max width of the window,
the rectangle would be invisible D

— If we specify an x value which is
the width of the screen — width of the rectangle

it will be seen D

1) Measuring size of the gap
between the paddle and ball.

| We need to first calculate how far away the ball is |

circleDistanceY = distance from center of circle to center of paddle
circleDistanceX = distance from center of circle to left edge of paddle

H!

(0,0) (width,0)

1) Measuring size of the gap
between the paddle and ball.

circleDistanceY

o
circleDistanceX

boolean hitPaddle (Paddle paddle, Ball ball)

{ (0,height) (Width, height)

//These variables measure the magnitude of the gap between the paddle and ball.

float circleDistanceX
= abs(ball.getXCoord() - paddle.getXCoord());

float circleDistanceY
= abs(ball.getYCoord() - paddle.getYCoord() - paddle.getPaddleHeight()/2);

-—

- Questions

Q1: What is the circleDistanceX
if the circle is at (200,400)

And the paddle is at (380,100)
with a paddle height of 1007?

Q2: What is the circleDistanceY
if the circle is at (200,400)

And the paddle is at (380,100)
with a paddle height of 1007?

Collision Detection Algorithm

Method signature:
boolean hitPaddle (Paddle paddle, Ball ball)

Algorithm:
1) Measure the size of the gap between the paddle and the ball.

2) If the ball is too far away from the Paddle on the X axis to have a collision
- return false

3) If the ball is too far away from the Paddle on the Y axis to have a collision
- return false

4) Otherwise
- return true.

2) If ball is too far away from the Paddle
on the X axis = return false

//The Ball is too far away from the Paddle on the X axis
// to have a collision,

// so abandon collision detection

if (circleDistanceX > (ball.getDiameter()/2)) {
return false;

}

If ball is too far away from the Paddle
on the X axis = return false

Collision Detection Algorithm

Method signature:
boolean hitPaddle (Paddle paddle, Ball ball)

Algorithm:
1) Measure the size of the gap between the paddle and the ball.

2) If the ball is too far away from the Paddle on the X axis to have a collision
- return false

3) If the ball is too far away from the Paddle on the Y axis to have a collision
- return false

4) Otherwise
- return true.

3) If ball is too far away from the Paddle
on the Y axis = return false

return false return true

//The Ball is too far away from the Paddle on the Y axis to have a collision,
//so abandon collision detection

if (circleDistanceY >
(paddle.getPaddleHeight()/2 + ball.getDiameter()/2)) {
return false;

}

If ball is too far away from the Paddle
on the Y axis = return false

Collision Detection Algorithm

Method signature:
boolean hitPaddle (Paddle paddle, Ball ball)

Algorithm:
1) Measure the size of the gap between the paddle and the ball.

2) If the ball is too far away from the Paddle on the X axis to have a collision
- return false

3) If the ball is too far away from the Paddle on the Y axis to have a collision
- return false

4) Otherwise
- return true.

4) Otherwise return true

//We have a collision
return true;

return true

We have a collision

boolean hitPaddle (Paddle paddle, Ball ball)
{
//These variables measure the magnitude of the gap between the paddle and ball.
float circleDistanceX
= abs(ball.getXCoord() - paddle.getXCoord());
float circleDistanceY
= abs(ball.getYCoord() - paddle.getYCoord() - paddle.getPaddleHeight()/2);

//The Ball is too far away from the Paddle on the X axis to have a collision,
//so abandon collision detection
if (circleDistanceX > (ball.getDiameter()/2)) {

return false;

}

//The Ball is too far away from the Paddle on the Y axis to have a collision,

//so abandon collision detection

if (circleDistanceY > (paddle.getPaddleHeight()/2 + ball.getDiameter()/2)) {
return false;

}

//We have a collision
return true; hitPaddle()

hitPaddle (paddle, ball) method

e Call the hitPaddle (paddle,ball) method from the draw() method
in our main PongGame class.

 Which in turn calls ball.hit() if true

void draw (){
background(0); //Clear the background
paddle.update(); //Update the paddle location in line with the cursor
paddle.display(); //Draw the paddle in this new location
ball.update(); // update the ball position.
ball.display(); //Draw the ball at its new location

//Set variable to true if ball and paddle are overlapping, false if not
boolean collision = hitPaddle (paddle, ball);

Aﬁ;

< if (collision == true){
ball.hit(); //the ball is hit i.e. reverse directio
}

Questions?

References

* Reas, C. & Fry, B. (2014) Processing — A Programming
Handbook for Visual Designers and Artists, 2" Edition, MIT
Press, London.

