
Grouping Objects (lecture 1 of 2)

Produced by:

(based on Ch. 4, Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling)

Department of Computing and Mathematics
http://www.wit.ie/

ArrayList and Iteration

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor
Dr. Frank Walsh

Topic list
1. Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList
2. Indexing within Collections
– Retrieval and removal of objects

3. Generic classes
– e.g. ArrayList

4. Iteration
– Using the for loop
– Using the while loop
– Using the for each loop

• Next SlideDeck:
coding a Shop Project that stores an ArrayList of Products.

The requirement to group objects

• Many applications involve collections of objects:
– Personal organizers.
– Library catalogs.
– Student-record system.

• The number of items to be stored varies:
– Items added.
– Items deleted.

Example: A personal notebook

• Notes may be stored.

• Individual notes can be viewed.

• There is no limit to the number of notes.

• It generally tells you how many notes are stored.

Java API: the class library

• Many useful classes.
• We don’t have to write everything from scratch.
• Java calls its libraries, packages.
• Packages contain individual
classes

https://docs.oracle.com/javase/8/docs/api/

Java API: the class library

Back to the notebook:
• Grouping objects is a recurring requirement.
– The java.util package contains classes for doing this

…the Collections Framework.

https://docs.oracle.com/javase/8/docs/api/

Java’s Collections Framework

ArrayList Collection
• We specify:

– the type of collection
• e.g.: ArrayList

– the type of objects it will contain
• e.g.: <String>

• We say
– “ArrayList of String”

import java.util.ArrayList;

public class Notebook
{

// Storage for an arbitrary number of notes.
private ArrayList <String> notes;

// Perform any initialization required for the notebook.
public Notebook()
{

notes = new ArrayList <String>();
}

}

declares notes as a private “ArrayList of <String>”

notes is initialised by calling the constructor using new

Note: new and ()

import the ArrayList package

Object structures with ArrayList

Adding a third note

Features of the ArrayList Collection

• It increases its capacity as necessary.
• It keeps a private count
– size() accessor.

• It keeps the objects in order.

Details of how all this is done are hidden.
– Does that matter?
– Does not knowing how, prevent us from using it?

?

import java.util.ArrayList;

public class Notebook
{

private ArrayList <String> notes;

public Notebook(){
notes = new ArrayList <String> ();

}

public void storeNote(String note){
notes.add(note);

}

public int numberOfNotes(){
return notes.size();

}
}

Adding a new note
of type String

Returning the
number of notes

Topic list
1. Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList
2. Indexing within Collections
– Retrieval and removal of objects

3. Generic classes
– e.g. ArrayList

4. Iteration
– Using the for loop
– Using the while loop
– Using the for each loop

• Next SlideDeck:
coding a Shop Project that stores an ArrayList of Products.

ArrayList: Index numbering

Retrieving an object – showNote()

Index
validity
checks

public void showNote (int noteNumber)
{

if(noteNumber < 0) {
// This is not a valid note number.

}
else if(noteNumber < numberOfNotes()) {

System.out.println(notes.get(noteNumber));
}
else {

// This is not a valid note number.
}

}
Retrieve and
print the note

Removing an object
public void removeNote(int noteNumber)

{
if(noteNumber < 0) {

// This is not a valid note number, so do nothing.
}
else if(noteNumber < numberOfNotes()) {

// This is a valid note number.
notes.remove(noteNumber);

}
else {

// This is not a valid note number, so do nothing.
}

}

Index
validity
checks

Delete the note at
the specific index

Removal may affect numbering

This String had an index of 2
before removal.

Now it has an index of 1
after removal.

Removal may affect numbering

BEFORE AFTER

0 1 2 0 1

NOTE the change in index numbering
Size: 3 Size: 2

Topic list
1. Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList
2. Indexing within Collections
– Retrieval and removal of objects

3. Generic / Parameterized classes
– e.g. ArrayList

4. Iteration
– Using the for loop
– Using the while loop
– Using the for each loop

• Next SlideDeck:
coding a Shop Project that stores an ArrayList of Products.

Generic/Parameterized Classes

Collections are known as parameterized or generic types.

Note <E> is the parameter.

E gets replaced with some Class or Type

String is not parameterized.

Generic/Parameterized Classes

The type parameter <E>
says what we want a list of e.g.:

ArrayList<Person>
ArrayList<TicketMachine>
ArrayList<String>
etc.

ArrayList is parameterized.String is not parameterized.

Generic/Parameterized classes
• ArrayList implements list functionality:

Topic list
1. Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList
2. Indexing within Collections
– Retrieval and removal of objects

3. Generic classes
– e.g. ArrayList

4. Iteration
– Using the for loop
– Using the while loop
– Using the for each loop

• Next SlideDeck:
coding a Shop Project that stores an ArrayList of Products.

Processing a whole collection (iteration)

• We often want to perform some actions an arbitrary number of times.
– E.g.,

• Print all the notes in the notebook.
• How many are there?
• Does the amount of notes in our notebook vary?

• Most programming languages include loop statements to make this possible.

• Loops enable us to control how many times we repeat certain actions.

Loops in Programming
• There are three types of standard loops in (Java) programming:
– while
– for
– do while

• You typically use for and while loops to iterate over your ArrayList collection,

OR

• you can use another special construct associated with Collections:
– for each

Topic list
1. Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList
2. Indexing within Collections
– Retrieval and removal of objects

3. Generic classes
– e.g. ArrayList

4. Iteration
– Using the for loop
– Using the while loop
– Using the for each loop

• Next SlideDeck:
coding a Shop Project that stores an ArrayList of Products.

Recap: for loop pseudo-code

for(initialization; boolean condition; post-body action)
{

statements to be repeated
}

General form of a for loop

Recap: for loop syntax

for(initialization; boolean condition; post-body action)
{

statements to be repeated
}

Recap: for loop syntax

initialization int i = 0; Initialise a loop control variable (LCV) e.g. i.
It can include a variable declaration.

boolean
condition

i < 4; Is a valid boolean condition that typically tests
the loop control variable (LCV).

post-body
action

i++ A change to the loop control variable (LCV).
Contains an assignment statement.

Recap: for loop flowchart

for(int i = 0; i < 4; i++)
{

System.out.println(i);
}

statement(s)trueboolean
condition?

false

update

for loop: for iterating over a collection (e.g. ArrayList)

Increment
index by 1

for each value of i less than the size
of the collection,

print the next note,

and then increment i

Topic list
1. Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList
2. Indexing within Collections
– Retrieval and removal of objects

3. Generic classes
– e.g. ArrayList

4. Iteration
– Using the for loop
– Using the while loop
– Using the for each loop

• Next SlideDeck:
coding a Shop Project that stores an ArrayList of Products.

Recap: while loop pseudo code

while (loop condition) {
loop body

}

while we wish to continue, do the things in the loop body

boolean conditionwhile keyword

Statements to be repeated

General form of a while loop

Recap: while loop construction

Declare and initialise loop control variable (LCV)
while(condition based on LCV)
{

“do the job to be repeated”
“update the LCV”

}

This structure should always be used

Recap: while loop flowchart

int i = 1;
while (i <= 10)
{

System.out.println(i);
i++;

}

statement(s)
true

boolean
condition?

false

while loop: iterating over a collection (e.g. ArrayList)

Increment i
by 1

while the value of i is less than the
size of the collection,

print the next note,

and then increment i

for versus while
Variable i is the
Loop Control Variable (LCV).

It must be initialised, tested and changed.

int i = 0 is the initialisation.

i < notes.size() is the test.

i++ is the post-body action i.e. the change.

Topic list
1. Grouping Objects
– Developing a basic personal notebook project using Collections

e.g. ArrayList
2. Indexing within Collections
– Retrieval and removal of objects

3. Generic classes
– e.g. ArrayList

4. Iteration
– Using the for loop
– Using the while loop
– Using the for each loop

• Next SlideDeck:
coding a Shop Project that stores an ArrayList of Products.

for each loop: pseudo code

for (ElementType element : collection)
{

loop body
}

For each element in collection, do the things in the loop body.

loop headerfor keyword

Statement(s) to be repeated

General form of the for-each loop

for each loop: iterating over a collection (e.g. Arraylist)

for each note (of type String)
in the notes collection,

print out note

for each loop

• Can only be used for access;
– you can’t remove the retrieved elements.

• Can only loop forward in single steps.

• Cannot use to compare two collections.

for each versus while

• for-each:
– easier to write.
– safer: it is guaranteed to stop.

• while:
– we don’t have to process the whole collection.
– doesn’t even have to be used with a collection.
– take care: could be an infinite loop.

ArrayList Collection
• We specify:

– the type of collection
• e.g.: notes

– the type of objects it will contain
• e.g.: <String>

• We say
– “notes is an ArrayList of String”

Summary

• Java Collections Framework
– ArrayList

• import java.util.ArrayList;
• private ArrayList <String> notes;
• notes = new ArrayList <String>();
• notes.add(note);
• notes.size();
• notes.get(noteNumber)
• notes.remove(noteNumber);

• Iterating collections
– for each

• for (String note : notes)
{System.out.println(note);}

Questions?

