
Menu Driven Apps

Produced 
by:

Department of Computing and Mathematics
http://www.wit.ie/

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor
Dr. Frank Walsh

Loops, the switch statement, and menus



Topics list

1. Loops 
– while, for, for each
– Loop Control Variables (LCV)
– Arrays and counter controlled loops
– Arrays and sentinel based loops
– Arrays and flag-based loops 

2. switch statement

3. Menus 
– A simple menu using switch.
– adding a menu to Shop v3.0.



Recap - Loop Control Variable

2. Test 
i.e. boolean condition

3. Update directly before end of loop

1. Initialise

This loop is a counter-controlled while loop



Topics list

1. Loops 
– while, for, for each
– Loop Control Variables (LCV)
– Arrays and counter controlled loops
– Arrays and sentinel based loops
– Arrays and flag-based loops 

2. switch statement

3. Menus 
– A simple menu using switch.
– adding a menu to Shop v3.0.



Recap - Counter-Controlled Loops

• Sometimes we know when we are coding i.e. compile-time, 
how many inputs we will have.
– See example 1

• Other times, we find out at run-time
how many inputs we have
– See example 2



Recap - Counter-Controlled for Loop:
number of inputs known at compile-time

Example 1



Here, we know at run-time how many inputs we have.

Recap - Counter-Controlled for Loop:
number of inputs known at run-time

Example 2



Topics list

1. Loops 
– while, for, for each
– Loop Control Variables (LCV)
– Arrays and counter controlled loops
– Arrays and sentinel based loops
– Arrays and flag-based loops 

2. switch statement

3. Menus 
– A simple menu using switch.
– adding a menu to Shop v3.0.



Sentinel-based loops

• Use this type of loop 
when you DON’T know how many inputs you will have.

• The end of input is signalled by a special value.
– e.g. 

• if you are calculating the ‘average of ages of people in the room’: 
– write a program that will continually take in ages until, say, 

-1 is entered.  
• -1 would be the sentinel value.



Structure
• Concept of Loop Control Variable is vital here.

• The loop continuation is solely based on the input, 
so the variable containing the information 
is the Loop Control Variable.

• Initialise the Loop Control Variable before entry into the loop.

• Remember to ‘update the Loop Control Variable’ 
just before the end of the loop. 



Try this exercise

• Write a loop to read in and add up a set of integers. 
Keep going until the value ‘-1’ is inputted. 

• What is your Loop Control Variable?

Note:  for this exercise, don’t store the values in an array…
we’ll do that in a few slides time.



Solution

1. Initialise

2. LCV Condition

3. Update LCV directly 
before end of loop



Next step in the exercise

• We need to record how many inputs have happened.

• Change the previous solution 
so that you know at the end, 
how many numbers have been inputted. 

• At the end, print the sum and number of inputs.



Code with number of inputs



Try this now - using arrays

• Re-write the code on the previous slide, 
but store the data in an array.
– NOTE:
• Assume the max number of inputs possible is 100 

(i.e. size of array).

• We also need to know 
• how many inputs actually happened.



Solution – storing inputs



Topics list

1. Loops 
– while, for, for each
– Loop Control Variables (LCV)
– Arrays and counter controlled loops
– Arrays and sentinel based loops
– Arrays and flag-based loops 

2. switch statement

3. Menus 
– A simple menu using switch.
– adding a menu to Shop v3.0.



Flag-Based Loops

• These are used when you want to 
– examine a collection of data 
– to check for a property. 
– Once a property has been established, 

it cannot be ‘unestablished’.

• ‘Once the flag is raised, it cannot be taken down’



Flag-Based Loops - example

• Given a populated array of numbers, 
cycle over the array to see if any numbers are odd.

• If you find:
– At least one odd number, 
• print out to the user that there is at least one odd number.

– No odd numbers, 
• inform the user of this.



Solution: check if ‘any numbers odd’

// For each number in the array numbers

//if number mod 2 (remainder after division by 2)



Better code...

Use of boolean variable in condition



What about having a 
flag-based loop 

in a method 
with a boolean return type?



Calling the method - handling the returned boolean

Method Definition - boolean return type

// For each number in the array numbers

//if number mod 2 (remainder after division by 2)

// return true or false



Topics list

1. Loops 
– while, for, for each
– Loop Control Variables (LCV)
– Arrays and counter controlled loops
– Arrays and sentinel based loops
– Arrays and flag-based loops 

2. switch statement

3. Menus 
– A simple menu using switch.
– adding a menu to Shop v3.0.



The switch statement

• The switch statement works in exactly the same way as a set of 
if statements, 
but is more compact and readable. 

• The switch statement switches on a single value
to one of an arbitrary number of cases. 

• Two possible patterns of use are…



The switch statement – pattern one



The switch statement – pattern two



The switch statement

• A switch statement can have 
any number of case labels.



The switch statement

The break statement after every case is needed, 

otherwise the execution 
“falls through” into the next label’s statements. 

All three of the first values (cases) will execute the first statements section, 

Pattern two makes use of this. 

Values (cases) four and five will execute the second statements section.



The switch statement

• The default case is optional. 
• If no default is given, 

it may happen that no case is executed.



The switch statement

• The break statement after the default 
(or the last case, if there is no default) 

is not needed but is considered good style.



The switch statement
• Pre Java 7, 

the expression used to switch on,

and the case labels (value) are 
char or int.

• Post Java 7, 
you can also switch on String.



The switch statement – int example



The switch statement – char example

switch (group){
case 'A':

System.out.println("10.00 a.m ");
break;

case 'B':
System.out.println("1.00 p.m ");
break;

case 'C':
System.out.println("11.00 a.m ");
break;

default:
System.out.println(“Enter option A, B or C only!");

}



The switch statement – String example



Topics list

1. Loops 
– while, for, for each
– Loop Control Variables (LCV)
– Arrays and counter controlled loops
– Arrays and sentinel based loops
– Arrays and flag-based loops 

2. switch statement

3. Menus 
– A simple menu using switch.
– adding a menu to Shop v3.0.



A simple menu using switch



Now loop on the switch statement

Note the use of the 
Loop Control Variable



This gives the following output



Topics list

1. Loops 
– while, for, for each
– Loop Control Variables (LCV)
– Arrays and counter controlled loops
– Arrays and sentinel based loops
– Arrays and flag-based loops 

2. switch statement

3. Menus 
– A simple menu using switch.
– adding a menu to Shop v3.0.



Adding a basic menu to Shop…



/**
* mainMenu() - This method displays the menu for the application,
* reads the menu option that the user entered and returns it.
*
* @return     the users menu choice
*/
private int mainMenu(){

System.out.println("Shop Menu");
System.out.println("---------");
System.out.println("  1) Add a Product");
System.out.println("  2) List the Products");
System.out.println("  0) Exit");
System.out.print("==>> ");
int option = input.nextInt();
return option;

}

Menu to be displayed…

Driver

1. mainMenu()



private void runMenu(){

int option = mainMenu();

while (option != 0){

switch (option){
case 1:    addProduct();

break;
case 2:    System.out.println(store.listProducts());

break;
default:    System.out.println("Invalid option entered: " + option);

break;
}

//pause the program so the user can read what we just printed to the terminal window
System.out.println("\nPress any key to continue...");
input.nextLine();
input.nextLine();  //this second read is required - bug in Scanner class; 

//a String read is ignored straight after reading an int.

//display the main menu again
option = mainMenu();

}

Handling the menu input…

Driver

2. runMenu()



public class Driver{

private Scanner input = new Scanner(System.in);
private Store store;

public static void main(String[] args) {
Driver c = new Driver();

}

public Driver()
{

store = new Store();
runMenu();

}

Calling the menu on startup…

Driver

3. Driver()



A more evolved Shop menu…

Shop Menu
---------
1) Add a Product
2) List the Products

---------
3) List the cheapest product
4) List the products in our current product line
5) Display average product unit cost
6) List products that are more expensive than a given price
0) Exit

==>> 



/**
* mainMenu() - This method displays the menu for the application,
* reads the menu option that the user entered and returns it.
*
* @return     the users menu choice
*/

private int mainMenu(){
System.out.println("Shop Menu");
System.out.println("---------");
System.out.println("  1) Add a Product");
System.out.println("  2) List the Products");
System.out.println("---------");
System.out.println("  3) List the cheapest product");
System.out.println("  4) List the products in our current product line");
System.out.println("  5) Display average product unit cost");
System.out.println("  6) List products that are more expensive than a given price");
System.out.println("  0) Exit");
System.out.print("==>> ");
int option = input.nextInt();
return option;

}

Driver
1. mainMenu()



private void runMenu(){
int option = mainMenu();
while (option != 0){

switch (option){
case 1:    addProduct();

break;
case 2:    System.out.println(store.listProducts());

break;
case 3:    System.out.println(store.cheapestProduct());

break;
case 4:    System.out.println(store.listCurrentProducts());

break;
case 5:    System.out.println(store.averageProductPrice());

break;
case 6:    System.out.print("Enter the price barrier: ");

double price = input.nextDouble();
System.out.println(store.listProductsAboveAPrice(price));
break;

default:    System.out.println("Invalid option entered: " + option);
break;

}

//pause the program so the user can read what we just printed to the terminal window
System.out.println("\nPress any key to continue...");
input.nextLine();
input.nextLine();  //this second read is required - bug in Scanner class; 

//a String read is ignored straight after reading an int.

//display the main menu again
option = mainMenu();

}

Driver2. runMenu()



public class Driver{

private Scanner input = new Scanner(System.in);
private Store store;

public static void main(String[] args) {
Driver c = new Driver();

}

public Driver()
{

store = new Store();
runMenu();

} Shop Menu
---------

1) Add a Product
2) List the Products

---------
3) List the cheapest product
4) List the products in our current product line
5) Display average product unit cost
6) List products that are more expensive than a given price
0) Exit

==>> 

Driver3. Driver()



Summary
1. Loops 

– Recap of 
• while, for, for each

– Recap
• Loop Control Variables (LCV)

– Arrays and counter controlled loops
• Known at compile time
• Known at run time

– Arrays and sentinel based loops
• Special value e.g. -1

– Arrays and flag-based loops 
• Test for condition, 

raise flag if true, 
can’t take it down

2. switch statement

3. Menus 
– A simple menu using switch
– added a menu to Shop v3.0.

• 3 changes to Driver class
– mainMenu()
– runMenu()
– Driver()



Next

• Unit Testing
– Pre-requisite for next assignment
– JUnit
– TDD 

• Test driven development

• CRUD
• Debugging



Questions?


