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Topic List
1. Social Network V1
2. Inheritance hierarchies
3. Social Network V2
4. Coding inheritance hierarchies
– Super and subclasses
– Using constructors in these hierarchies

5. Social Network V3
– Deeper hierarchies
– Advantages of using inheritance

6. Subtyping and Substitution
7. Polymorphic variables / Collections
– Includes casting, wrapper classes, autoboxing /unboxing



Subtyping

Now, we have:
public void addPost(Post post)

We call this method with:
PhotoPost myPhoto = new PhotoPost(...);
feed.addPost(myPhoto);

First, we had:

public void addMessagePost(MessagePost message)
public void addPhotoPost(PhotoPost photo)



Subclasses and subtyping

• Classes define types.

• Subclasses define subtypes.

• Substitution:  
– objects of subclasses can be used 

where objects of supertypes are required.



Subtyping and assignment

Vehicle v1 = new Vehicle();
Vehicle v2 = new Car();
Vehicle v3 = new Bicycle();

subclass objects 
may be assigned to 
superclass variables



Subtyping and parameter passing
public class NewsFeed
{

public void addPost(Post post)
{

...
}

}

PhotoPost photo = new PhotoPost(...);
MessagePost message = new MessagePost(...);

feed.addPost(photo);
feed.addPost(message); subclass objects may be used as actual parameters 

when a superclass is required.



Social Network V2 - Object diagram

NewsFeed object 
holds a single mixed collection
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7 a) Polymorphic variables

• Object variables in Java are polymorphic

– They can hold objects of

i. more than one type
ii. the declared type
iii. subtypes (of the declared type).



Social Network V2 – polymorphic ArrayList of Post



Casting

We can assign subtype to supertype (note arrow direction)!

But we cannot assign a supertype to subtype (cannot go against the arrows)!

c = (Car) v; //casting…correct (only if the vehicle really is a Car!)

Vehicle v;
Car c = new Car();

v = c;               // correct (car is-a vehicle)

c = v;               // compile-time error!

Without (CASTING)



Casting

• An object type in parentheses - ().
• Used to overcome 'type loss'.
• The object is not changed in any way.
• A runtime check is made to ensure the object really is of that type:
– ClassCastException if it isn't!

• Use it sparingly.



The Object class

All classes inherit from Object.
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7 b) Polymorphic collections

• All collections are polymorphic.

• The elements could simply be of type Object.

public void add (Object element)

public Object get (int index)

• Usually avoided…
– we typically use a type parameter with the collection.



7 b) Polymorphic collections

• With a type parameter the degree of polymorphism:

ArrayList<Post> is limited.
• Collection methods are then typed.

• Without a type parameter, 

ArrayList<Object> is implied.
• Likely to get an “unchecked or unsafe operations” warning.
• More likely to have to use casts.



Collections and primitive types

• Potentially, all objects can be entered into collections
– because collections can accept elements of type Object
– and all classes are subtypes of Object.

• Great! But what about the primitive types: 
int, boolean, etc.?



Wrapper classes

• Primitive types are not object types. 
Primitive-type values must be wrapped in objects, to be stored in a collection!

• Wrapper classes exist for all primitive types:

Note that there is no simple mapping rule from primitive name to wrapper name!

primitive type

int
float
char
...

wrapper class

Integer
Float
Character
...



unwrap it
…
int value = iwrap.intValue();

Wrapper classes

int i = 18;

Integer iwrap = new Integer(i); wrap the value

In practice, autoboxing and unboxing mean we don't often have to do this explicitly



Autoboxing and unboxing
private ArrayList<Integer> markList;
…
public void storeMark(int mark)
{

markList.add(mark);
}

int firstMark = markList.get(0);

autoboxing

unboxing Or explicitly unwrapping the first mark in the list markList.get(0)

i.e. we don’t have to worry about explicitly wrapping mark above 



Summary

a) Polymorphic Variables 
b) Polymorphic Collections
• casting, 
• wrapper classes, 
• autoboxing /unboxing





Review

• Inheritance allows the definition of classes as extensions of other classes.
• Inheritance 
– avoids code duplication
– allows code reuse
– simplifies the code
– simplifies maintenance and extending

• Variables can hold subtype objects.
• Subtypes can be used wherever supertype objects are expected 

(substitution).


