
Inheritance - polymorphism

Produced
by:

Department of Computing and Mathematics
http://www.wit.ie/

Improving Structure with Inheritance

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor
Dr. Frank Walsh

Topic List
1. Social Network V1
2. Inheritance hierarchies
3. Social Network V2
4. Coding inheritance hierarchies
– Super and subclasses
– Using constructors in these hierarchies

5. Social Network V3
– Deeper hierarchies
– Advantages of using inheritance

6. Subtyping and Substitution
7. Polymorphic variables / Collections
– Includes casting, wrapper classes, autoboxing /unboxing

Subtyping

Now, we have:
public void addPost(Post post)

We call this method with:
PhotoPost myPhoto = new PhotoPost(...);
feed.addPost(myPhoto);

First, we had:

public void addMessagePost(MessagePost message)
public void addPhotoPost(PhotoPost photo)

Subclasses and subtyping

• Classes define types.

• Subclasses define subtypes.

• Substitution:
– objects of subclasses can be used

where objects of supertypes are required.

Subtyping and assignment

Vehicle v1 = new Vehicle();
Vehicle v2 = new Car();
Vehicle v3 = new Bicycle();

subclass objects
may be assigned to
superclass variables

Subtyping and parameter passing
public class NewsFeed
{

public void addPost(Post post)
{

...
}

}

PhotoPost photo = new PhotoPost(...);
MessagePost message = new MessagePost(...);

feed.addPost(photo);
feed.addPost(message); subclass objects may be used as actual parameters

when a superclass is required.

Social Network V2 - Object diagram

NewsFeed object
holds a single mixed collection

Topic List
1. Social Network V1
2. Inheritance hierarchies
3. Social Network V2
4. Coding inheritance hierarchies

– Super and subclasses
– Using constructors in these hierarchies

5. Social Network V3
– Deeper hierarchies
– Advantages of using inheritance

6. Subtyping and Substitution
7. Polymorphic

a) Variables
b) Collections
– casting, wrapper classes, autoboxing /unboxing

7 a) Polymorphic variables

• Object variables in Java are polymorphic

– They can hold objects of

i. more than one type
ii. the declared type
iii. subtypes (of the declared type).

Social Network V2 – polymorphic ArrayList of Post

Casting

We can assign subtype to supertype (note arrow direction)!

But we cannot assign a supertype to subtype (cannot go against the arrows)!

c = (Car) v; //casting…correct (only if the vehicle really is a Car!)

Vehicle v;
Car c = new Car();

v = c; // correct (car is-a vehicle)

c = v; // compile-time error!

Without (CASTING)

Casting

• An object type in parentheses - ().
• Used to overcome 'type loss'.
• The object is not changed in any way.
• A runtime check is made to ensure the object really is of that type:
– ClassCastException if it isn't!

• Use it sparingly.

The Object class

All classes inherit from Object.

Topic List
1. Social Network V1
2. Inheritance hierarchies
3. Social Network V2
4. Coding inheritance hierarchies

– Super and subclasses
– Using constructors in these hierarchies

5. Social Network V3
– Deeper hierarchies
– Advantages of using inheritance

6. Subtyping and Substitution
7. Polymorphic

a) Variables
b) Collections

• Casting
• wrapper classes,
• autoboxing /unboxing

7 b) Polymorphic collections

• All collections are polymorphic.

• The elements could simply be of type Object.

public void add (Object element)

public Object get (int index)

• Usually avoided…
– we typically use a type parameter with the collection.

7 b) Polymorphic collections

• With a type parameter the degree of polymorphism:

ArrayList<Post> is limited.
• Collection methods are then typed.

• Without a type parameter,

ArrayList<Object> is implied.
• Likely to get an “unchecked or unsafe operations” warning.
• More likely to have to use casts.

Collections and primitive types

• Potentially, all objects can be entered into collections
– because collections can accept elements of type Object
– and all classes are subtypes of Object.

• Great! But what about the primitive types:
int, boolean, etc.?

Wrapper classes

• Primitive types are not object types.
Primitive-type values must be wrapped in objects, to be stored in a collection!

• Wrapper classes exist for all primitive types:

Note that there is no simple mapping rule from primitive name to wrapper name!

primitive type

int
float
char
...

wrapper class

Integer
Float
Character
...

unwrap it
…
int value = iwrap.intValue();

Wrapper classes

int i = 18;

Integer iwrap = new Integer(i); wrap the value

In practice, autoboxing and unboxing mean we don't often have to do this explicitly

Autoboxing and unboxing
private ArrayList<Integer> markList;
…
public void storeMark(int mark)
{

markList.add(mark);
}

int firstMark = markList.get(0);

autoboxing

unboxing Or explicitly unwrapping the first mark in the list markList.get(0)

i.e. we don’t have to worry about explicitly wrapping mark above

Summary

a) Polymorphic Variables
b) Polymorphic Collections
• casting,
• wrapper classes,
• autoboxing /unboxing

Review

• Inheritance allows the definition of classes as extensions of other classes.
• Inheritance
– avoids code duplication
– allows code reuse
– simplifies the code
– simplifies maintenance and extending

• Variables can hold subtype objects.
• Subtypes can be used wherever supertype objects are expected

(substitution).

