
Inheritance

Produced 
by:

Department of Computing and Mathematics
http://www.wit.ie/

Exploring Polymorphism

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor
Dr. Frank Walsh



Lectures and Labs

• This weeks lectures and labs are based on examples in:

– Objects First with Java - A Practical Introduction using BlueJ, © David 
J. Barnes, Michael Kölling (https://www.bluej.org/objects-first/)

https://www.bluej.org/objects-first/


Topic List

1. Method polymorphism
– display()

2. Static and dynamic type
3. Overriding
4. Dynamic method lookup
5. Protected access



Dynamic method lookup 
1) Inheritance but no overriding

The inheritance hierarchy is ascended, 
searching for a match.



Dynamic method lookup
2) Polymorphism and overriding. 

The ‘first’ version found is used.



Dynamic method lookup summary

1. The variable is accessed.
2. The object stored in the variable is found.
3. The class of the object is found.
4. The class is searched for a method match.
5. If no match is found, the superclass is searched.
6. This is repeated until a match is found, or the class hierarchy is exhausted.
7. Overriding methods take precedence
– i.e. stop when you find a match.



Super call in methods

• Overridden methods are hidden 
– but we often still want to be able to call them explicitly.

• An overridden method 
can be called from the method that overrides it

– super.method(...)
– Recall we used super in our constructors.



e.g. calling an overridden method

public void display()
{

super.display();
System.out.println(” [" + filename + "]");
System.out.println(" " + caption);

}



Method polymorphism

• We have been discussing polymorphic method dispatch.

• A polymorphic variable can store objects of varying types.

• Method calls are polymorphic.
– The actual method called depends on the dynamic object type.



The instanceof operator

• It can recover ‘lost’ type information.

• It usually precedes assignment 
with a cast to the dynamic type:

instanceof is used to determine the dynamic type.

if (post instanceof MessagePost) {

MessagePost msg = (MessagePost) post;

… e.g. then access MessagePost methods via msg …
}



Recall the Object class…



Recall the Object class…

All classes inherit from 
Object.



Methods in 
Object are 

inherited by all 
classes.

Any of these may 
be overridden.



The toString method is commonly overridden:

public String toString()

Returns a string representation of the object.



Overriding toString in Post
public String toString()
{

String text = username + "\n" + timeString(timestamp); 

if(likes > 0) {
text += " - " + likes + " people like this.\n";

}
else {

text += "\n";
}

if(comments.isEmpty()) {
return text + " No comments.\n";

}
else {

return text + " " + comments.size() +
" comment(s). Click here to view.\n";

}
} 



Overriding toString

• Explicit print methods 
can often be omitted from a class:

System.out.println(post.toString());

• Calls to println with just an object automatically result in 
toString() being called:

System.out.println(post);

• We’ve seen how we can override how the object is printed 
by creating a toString() method




