CSS Style ||
Guide

CSS Style Guide | () |

validity - names - name style

- selectors - shorthand -
delimiters - order - stops -
quotations

Google HTML/CSS Style Guide

Table of Contents

1 Background 3.2 HTML Formatting Rules
2 General 4 CSS
2.1 General Style Rules 4.1 CSS Style Rules
2.2 General Formatting Rules 4.2 CSS Formatting Rules
2.3 General Meta Rules 4.3 CSS Meta Rules
3 HTML Parting Words

3.1 HTML Style Rules

DBJITAPURKM YEPAIAUDKA LESlHIIa nuinarnart wiaygydr CAATIVIRU 1™ 81

WSJ CSS Validation Service

Check Cascading Style Sheets (CSS) and (X)HTML documents with style sheets

By URI By file upload By direct input

Validate by URI

Enter the URI of a document (HTML with CSS or CSS only) you would like validated:

Address:

» More Options

\ Check)
NS

KpdinT w d muoinarnari

WS("“’ CSS Validation Service
o/

Check Cascading Style Sheets (CSS) and (X)HTML documents with style sheets

CoS Validity

By URI By file upload By direct input

Validate by URI
Enter the URI of a document (HTML with CSS or CSS only) you would like validated:

Use valid CSS where
possible.

Address:

» More Options

Check

Unless dealing with CSS validator bugs or requiring proprietary
syntax, use valid CSS code.

Use tools such as the W3C CSS validator to test.

Using valid CSS is a measurable baseline quality attribute that
allows to spot CSS code that may not have any effect and can be
removed, and that ensures proper CSS usage.

/* Not recommended: meaningless */

#yee-1901 {}

/* Not recommended: presentational */
.button-green {}
.clear {}

/* Recommended: specific */
#gallery {}

#login {}

.video {}

/* Recommended: generic */
.aux {}
.alt {}

ID and Class Naming

/* Not recommended: meaningless */

Use meaningful or
#yee-1901 {}

generic ID and class

Names. /* Not recommended: presentational */
.button-green {}

Instead of .clear {}
presentational or
cryptic names, /* Recommended: specific */
always use ID and #gallery {}
#login {}
class names that e

reflect the purpose

of the element In /* Recommended: generic */
question, or that are | -2 Y

otherwise generic. "

Jsing functional or generic names reduces the probability of
Unnecessary document or template changes.

/* Not recommended */
#navigation {}
.atr {}

/* Recommended */

#nav {}
.author {}

D and Class Name Style

/* Not recommended */

Use ID and class #navigation {}
names that are as gt

short as possible but

as long as /* Recommended */
necessary. f‘ :zzh})]}: .

Try to convey what an |ID or class is about while being as brief as
possible.

Using ID and class names this way contributes to acceptable levels
of understandablility and code efficiency.

/* Not recommended */

ul#example {}
div.error {}

/* Recommended */
#example {}
.error {}

Type Selectors

/* Not recommended */

ul#example {}
Avoid qualifying ID = div.error {}
and class names

with type selectors. | /* recommended */
#example {}

.error {}

Unless necessary (for example with helper classes), do not use
element names in conjunction with IDs or classes.

Avoiding unnecessary ancestor selectors is useful
for performance reasons.

/* Not recommended */
border-top-style: none;

font-family: palatino, georgia, serif;
font-size: 100%;

line-height: 1.6;

padding-bottom: 2em;

padding-left: lem;

padding-right: lem;

padding-top: 0;

/* Recommended */

border-top: 0;

font: 100%/1.6 palatino, georgia, serif;
padding: 0 lem 2em;

Shorthand Properties

/* Not recommended */
border-top-style: none;
font-family: palatino, georgia, serif;

Use shorthand font-size: 100%;

oroperties where | tinerheights 1.6
padding-bottom: 2em;

pOSSib‘e' padding-left: lem;

padding-right: lem;
padding-top: 0;

/* Recommended */

border-top: 0;

font: 100%/1.6 palatino, georgia, serif;
padding: 0 lem 2em;

CSS offers a variety of shorthand properties (like font) that should be used whenever possible, even in
cases where only one value is explicitly set.

Using shorthand properties is useful for code efficiency and understandabillity.

12

/* Not recommended:
.demoimage {}

/* Not recommended:
.error status {}

/* Recommended */
#video-id {}
.ads-sample {}

does not separate the words “demo” and “image” */

uses underscore instead of hyphen */

13

ID and Class Name Delimiters

/* Not recommended: does not separate the words “demo” and “image” */

.demoimage {}

/* Not recommended: uses underscore instead of hyphen */

.error status {}

/* Recommended */
#video-id {}
.ads-sample {}

Separate words in ID and class names by a hyphen.

Do not concatenate words and abbreviations in selectors by any
characters (including none at all) other than hyphens, in order to
improve understanding and scannability.

14

p
background: fuchsia;
border: 1px solid;
border-radius: 4px;
color: black;
text-align: center;
text-indent: 2em;

15

Declaration Order

p
background: fuchsia;
border: 1px solid;
border-radius: 4px;
color: black;
text-align: center;
text-indent: 2em;

Alphabetize declarations.

Put declarations in alphabetical order in order to achieve
consistent code In a way that Iis easy to remember and maintain.

16

/* Not recommended */
.test {
display: block;
height: 100px

/* Recommended */
.test {
display: block;
height: 100px;

17

Declaration Stops

/* Not recommended */
.test {
display: block;
height: 100px
}

/* Recommended */
.test {
display: block;
height: 100px;
}

Use a semicolon after every declaration.

End every declaration with a semicolon for consistency
and extensibility reasons.

18

/* Not recommended */
@import url("https://www.google.com/css/maia.css");

html {
font-family: "open sans", arial, sans-serif;

/* Recommended */
@import url(https://www.google.com/css/maia.css);

html {
font-family: 'open sans', arial, sans-serif;

19

CSS Quotation Marks

/* Not recommended */

@import url("https://www.google.com/css/maia.css");

html {
font-family: "open sans"”, arial, sans-serif;

}

/* Recommended */

@import url(https://www.google.com/css/maia.css);

html {
font-family: 'open sans', arial, sans-serif;

}

Use single (‘') rather than double ("") quotation marks for attribute selectors and property values.

DO not use quotation marks in URI values (url()).

20

Parting VWords:

“If you’'re editing code, take a few minutes to look
at the code around you and determine its style. If
they use spaces around all their arithmetic
operators, you should too. If their comments have
little boxes of hash marks around them, make
your comments have little boxes of hash marks
around them too.”

21

Be consistent:

“The point of having style guidelines is to have a common
vocabulary of coding so people can concentrate on what
you're saying rather than on how you're saying it. We
present global style rules here so people know the
vocabulary, but local style is also important. If code you
add to a file looks drastically different from the existing
code around it, it throws readers out of their rhythm when
they go to read it. Avoid this.”

22

http // getbem .com/ BEM — Block Element Modifier is a methodology that helps you
to create reusable components and code sharing in front-end

development

Easy \Viodular Flexible

To use BEM, you only need to employ BEM's Independent blocks and CSS selectors make Using BEM, methodologies and tools can be
naming convention. your code reusable and modular. recomposed and configured the way you like.

INtroaduction

BEM is a highly useful, powerful, and simple naming convention that

makes your front-end code easier to read and understand, easier to
work with, easier to scale, more robust and explicit, and a lot more strict.

http://getbem.com/

Slock

Encapsulates a standalone entity that is meaningful on its own. While blocks can be nested and interact with each other, semantically they remain equal;
there is no precedence or hierarchy. Holistic entities without DOM representation (such as controllers or models) can be blocks as well.

Naming HTML CSS
Block names may consist of Latin letters, digits, Any DOM node can be a block if it accepts a o Use class name selector only
and dashes. To form a CSS class, add a short class name.

o No tag name or ids
prefix for namespacing: .block

<div class="block">...</div> o No dependency on other blocks/elements on

a page

.block { color: #042; }

24

—lement

Parts of a block and have no standalone meaning. Any element is semantically tied to its block.

Naming HTML CSS

Element names may consist of Latin letters, digits, Any DOM node within a block can be an element. o Use class name selector only

dashes and underscores. CSS class is formed as Within a given block, all elements are semantically o No tag name or ids

block name plus two underscores plus element equal.
name: .block elem o No dependency on other blocks/elements on
<div class="block"> d Page
 Good

</div>

.block elem { color: #042; }

Bad

.block .block elem { color: #042; }
div.block elem { color: #042; }

25

Modifier

Flags on blocks or elements. Use them to change appearance, behavior or state.

Naming

Modifier names may consist of Latin letters, digits,
dashes and underscores. CSS class is formed as
block’s or element’s name plus two dashes:
.block--mod O .block elem--mod and .block--
color-black WIth .block--color-red . SPACES iN

complicated modifiers are replaced by dash.

HTML

Modifier is an extra class name which you add to
a block/element DOM node. Add modifier classes
only to blocks/elements they modify, and keep the
original class:

Good

<div class="block block--mod">...</div>
<div class="block block--size-big
block--shadow-yes">...

</div>

Bad

<div class="block--mod">...</div>

CSS

Use modifier class name as selector:

I .block--hidden { }

To alter elements based on a block-level modifier:

I .block--mod .block elem { }

Element modifier:

I .block elem--mod { }

26

—Xample

Suppose you have block form with modifiers theme: "xmas" and simple: true and with elements input and submit , and element submit With its own
modifier disabled: true fOr NOt submitting form while it is not filleq:

HTML CSS
<form class="form form--theme-xmas form--simple"> .form { }
<input class="form input" type="text" /> .form--theme-xmas { }
<input .form--simple { }
class="form submit form submit--disabled” .form input { }
type="submit" /> .form submit { }
</form> .form submit--disabled { }

27

