SELECT * FROM SONG;

ID ARTIST |DURATION TITLE

M d | 1 Beethoven |0 'Piano Sonata No. 3

O e S 2 Beethoven|0 Piano Sonata No. 7

3 Beethoven |0 "Piano Sonata No. 10
4 Beethoven 0 Piano Concerto No. 27
§ Beethoven 0 .Plano Concertos No. 17
6 Beethoven|0 Piano Concerto No. 10
(6 rows, 6 ms)

e

Model View Controller

Controller

REQUEST Application logic, process
the user request and get
appropriate data, then
output a design view

P~

)
)
ke
%

Model

Your website design, Database related, not
HTML files no images necessary database,

css etc here only data can be xml even
HTML layouts text files

Configuration file
specifies a
database that will
be integrated into
the application

Database in Play

conf/application.conf

Database configuration

~nnnn
Enable a database engine if needed.

#

To quickly set up a development database, use either:

—mem : for a transient in memory database (H2 in memory)
- fs 1 for a simple file written database (H2 file stored)

»db.defaultzmem

In Memory test database
Full SQL support
Replaced with ‘production’
database at a later stage

Inspecting the Database in Play

When app iIs

. =) http://localhost:9000/@db
running, browse to

Saved Settings: Generic H2 (Embedded)

Setting Name: Generic H2 (Embedded) Save Remove
Driver Class: org.h2.Driver

JDBC URL: jdbc:h2:mem:play

User Name: sa

Password:

Connect Test Connection

log In to database

Database
Tables

Database console

&Y | o |Auto commit <0

| | jdbc:h2:mem:play
=] playlist
0 id
q duration
0 title
|2, Indexes
= 1 playlist_song
0 playlist_id
1 songs_id
|2, Indexes
1 song
d id
o artist
0 duration
o title
|2, Indexes
(] information_schema
s2: Sequences
{#% Users
@ H2 1.4.193 (2016-10-31)

70 | Max rows: | 1000 %

Run | Run Selected Auto complete Clear SQL statement:

4 Autoselect | On & (2

L

O 0O | | Auto complete | Off

Important Commands

@ Displays this Help Page

14 Shows the Command History

(D |Ctrl+Enter |Executes the current SQL statement

(2 |Shift+Enter Executes the SQL statement defined by the text selection
Ctrl+Space Auto complete

& Disconnects from the database

Sample SQL Script

Delete the table if it exists
Create a new table

with ID and NAME columns
Add a new row
Add another row
Query the table

DROP TABLE IF EXISTS TEST;,

CREATE TABLE TEST(ID INT PRIMARY KEY,
NAME VARCHAR(255));

INSERT INTO TEST VALUES(1, "Hello");

INSERT INTO TEST VALUES(2, "World");

SELECT * FROM TEST ORDER BY ID;

Change data in a row UPDATE TEST SET NAME="HI' WHERE ID=1;

Remove a row DELETE FROM TEST WHERE ID=2;

Help HELP ...

Adding Database Drivers

Additional database drivers can be registered by adding the Jar file location of the driver to the the envil
CLASSPATH. Example (Windows): to add the database driver library C./Programs/hsqldb/lib/hsqldb.jar,
H2DRIVERS to C:/Programs/hsgldb/lib/hsqldb.jar.

Preloading the Database - YAML

/en W| kl ped |aorg/W| kl/YAM L & Not logged in Talk Contributions Create account Log in

Article Talk Read Edit View history |Search Wikipedia Q

WIKH’EDIA YAML

e Opetes From Wikipedia, the free encyclopedia

Main page YAML (/jeemal/, rhymes with camel) is a human-readable data serialization language. It is YAML

St commonly used for configuration files, but could be used in many applications where data is

Featured content))) Filename .yaml, .yml

Current events being stored (e.g. debugging output) or transmitted (e.g. document headers). YAML targets many | extension

Random article of the same communications applications as XML, but has taken a more minimal approach which | Internet not registered

Donate to Wikipedia intentionally breaks compatibility with SGML.I"! YAML 1.2 is a superset of JSON, another media type

Wikipedia store minimalist data serialization format where braces and brackets are used instead of indentation.[2] | Initial release ;;gnay 20013115 yoars

Interaction Custom data types are allowed, but YAML natively encodes scalars (such as strings, integers, Latest release 1.2 (Third Edition)
:;'Jp o and floats), lists, and associative arrays (also known as hashes or dictionaries). These data types ;;gmbe’ UL

ut Wikipeda are based on the Perl programming language, though all commonly-used high-level programmin :

Commurity portal languages share very :i:ialar conczpts.gYAlaL supp?)rts both Pytho::-style ingentationpto?ndicate 9 Type otforma oata nerchange
Recent changes Open format? Yes
Contact page nesting, and a more compact format that uses [] for lists and {} for hashes.['! The colon-centered Website yaml.org &

syntax used to express key-value pairs is inspired by electronic mail headers as defined in RFC

Too\:;hat links here 0822, and the document separator "--" is borrowed from MIME (RFC 2045&). Escape sequences are reused from C, and whitespace
Related changes wrapping for multi-line strings is inspired from HTML. Lists and hashes can contain nested lists and hashes, forming a tree structure; arbitrary
Upload file graphs can be represented using YAML aliases (similar to XML in SOAP).["l YAML is intended to be read and written in streams, a feature
Special pages inspired by SAX.[)

Permanent link '
Page information Support for reading and writing YAML is available for several programming languages.!3 Some source code editors such as Emacs!“! and

Wikidata ftemn various integrated development environments(®l€l7] have features that make editing YAML easier, such as folding up nested structures or
Cite this page automatically highlighting syntax errors.

YAML is a widely used notion for
representing structured information

YAML Example

An Invoice expressed via
YAML. Structure is shown
through indentation (one or

more spaces). Sequence

items are denoted by a
dash, and key value pairs
within a map are separated
by a colon.

1nvoice: 34843
date . 2001-01-23
bill-to: &1d001
given : Chris
family : Dumars
address:
lines: |
458 Walkman Dr.
Suite #2927
city : Royal Oak
state : MI
postal : 48046
ship-to: *1d001

product:

- sku : BL394D
quantity . 4
description : Basketball
price : 450.00

- sku : BL4438H
quantity 1
description : Super Hoop
price : 2392.00

tax : 251.42

total: 4443.52

comments: >
Late afternoon 1is best.
Backup contact 1is Nancy

Billsmer @ 338-4338.

Song sl
Song s2
Song s3
Playlist
pl.songs
pl.songs
pl.songs

new Song("Piano Sonata No. 3", "Beethoven");
new Song("Piano Sonata No. 7", "Beethoven");
new Song("Piano Sonata No. 10", "Beethoven");
pl = new Playlist("Beethoven Sonatas");

.add (s1);

.add (s2);

.add (s3);

Embedded in a compiled
program.
When running, objects
OCCupy appropriate in
memory data structures.

Just a File format.

Used to represent structured
information in a flat file.
Must be processed by various
tools in order to be useful.

java

Song(sl):
title: Piano Sonata No.
artist: Beethoven
duration: 5

Song(s2):
title: Piano Sonata No.
artist: Beethoven
duration: 6

Song(s3):
title: Piano Sonata No.
artist: Beethoven
duration: 8

Playlist(pl):
title: Bethoven Sonatas
duration: 19
songs:
- sl
- 52
- S3

3

7

10

yam|

yaml in Play

- playlist-3
= docviewer ~/dev/play-1.5.0/mod
= playlist-playlist.3.end ~/repos/m

app
controllers
¢ About

Bootstap class & Admin

contains instruction Dashboard

C
c PlaylistCtrl
to load a model from & Start

yaml file models

views

ﬁ & Bootstrap

conf
= application.conf

ﬁ | data.yml

1| dependencies.yml

data.yml contains the j|messages

: = routes
model representation Sublic

yaml in Play

Model data will be
loaded into model
objects

ﬁ

C

- playlist-3
= docviewer ~/dev/play-1.5.0/modulé

- playlist-playlist.3.end ~/repos/moc
app

controllers
models
c Playlist
c Song
VIeWS
Bootstrap

conf

application.conf

| data.ym|
' dependencies.ym|
|messages

routes

public

10

Revised Model Class: Song

Plain Old Java Object (POJO)

Entity Model Object

package models;

public class Song

{

}

public String title;
public String artist;

public Song(String title, String artist)

{
this.title = title;
this.artist = artist;

}

package models;
import javax.persistence.Entity;
import play.db.jpa.Model;

@Entity

public class Song extends Model

{
public String title;
public String artist;
public int duration;

public Song(String title, String artist, int duration)

{
this.title = title;
this.artist = artist;
this.duration = duration;

}
}

“extends” from Model
class (inheritance).
Marked as
“@Entity” (Annotation).

11

Revised Model Class: Playlist

Plain Old Java Object (POJO)

Entity Model Object

package models;

import java.util.ArraylList;
import java.util.List;

public class Playlist

{
public String title;
public List<Song> songs

new ArrayList<Song>();

public Playlist(String title)
{
this.title = title;
s
s

Playlist Song

songs

“extends” from Model
class (inheritance).
Marked as
“@Entity” (Annotation).

package models;

import java.util.ArraylList;
import java.util.List;

import javax.persistence.CascadeType;
import javax.persistence.Entity;
import javax.persistence.OneToMany;

import play.db.jpa.Model;

@Entity
public class Playlist extends Model

{
public String title;

@OneToMany(cascade = CascadeType.ALL)
public List<Song> songs = new ArrayList<Song>();

public Playlist(String title, int duration)
{
this.title = title;
this.duration = duration;
+
}

“@OneToMany” (Annotation)
describes Playlist->Song
relationship for database

12

Song(sl):
title: Piano Sonata No. 3
artist: Beethoven
duration: 5

Song(s2):
title: Piano Sonata No. 7
artist: Beethoven
duration: ©

Song(s3):
title: Piano Sonata No. 10
artist: Beethoven
duration: 8

Playlist(pl):
title: Bethoven Sonatas
duration: 19
songs:
- sl
- S2
- S3

playlist

docviewer ~/dev/play-1.5.C
playlis: ~[repos/wit-hdip-comp

app

controllers

models

c Playlist

c Song

views
errors
tags

& about.html

& admin.html

o dashboard
4 main.htmi

a - playlist.html

5 start.html
¢ Bootstrap
conf

= application.conf

data.yml

dependencies.yml

| messages
= routes
public

.html

import
import
import
import

import

{
{
}

}

java.util.List;
play.x;
play.jobs.x;
play.test.x;

mode ls.x;

@OnApplicationStart
public class Bootstrap extends Job

public void doJob()

Fixtures. loadModels("data.yml");

localhost:9000/@db

] jdbc:h2:mem:play

When play app starts -
Bootstrap.doJob() called

=l] playlist

g
 duration
0 title
|2, Indexes
-l [playlist_song
0 playlist_id
b songs id
|2, Indexes
-l] song
id
artist
duration
title
2, Indexes
+ (] information_schema
+ 5% Sequences
+ {§) Users
'j) H2 1.4.193 (2016-10-31)

[+
N o Cmom

M| & | @Auocommit “0 ‘D | Maxrows:[1000 ¢ @ O | | Auto complete | Off

Run Run Selected Auto complete Clear SQL statement:

+ Auto

Important Commands

@)

Displays this Help Page

Shows the Command History

(D |Ctri+Enter |Executes the current SQL statement

Q Shift+Enter Executes the SQL statement defined by the text selection
Ctrl+Space Auto complete

¥y Disconnects from the database

13

Bootstrap class

iMac:playlist-2 edeleastar$ play run

"_\I
/l
| _|

play! 1.5.0, https://waww.playframework.com
Ctrl+C to stop

using java version "1.8.0_162"
Listening for transport dt_socket at address: 8000
17:53:49,806 INFO ~ Starting /Users/edeleastar/dev/playlist-2
17:53:49,906 WARN ~ You're running Play! in DEV mode
17:53:50,007 INFO ~ Listening for HTTP on port 9000 (Waiting a first request to start) ...
~ Server 1s up and running
17:53:59,610 INFO HikariPool-1 - Starting...
17:53:59,648 INFO HikariPool-1 - Start completed.
17:53:59,662 INFO Connected to jdbc:hZ2:mem:play for default
17:54:00,703 INFO Application 'playlist-2' is now started !
17:54:01,593 INFO Rendering Start

import java.util.List;

import play.x;
import play.jobs.x;
import play.test.x;

import models. x;

@OnApplicationStart
public class Bootstrap extends Job

{
public void doJob()

{
}

Fixtures. loadModels("data.yml");
+

Application Lifecycle -> Run Bootstrap doJob
once, when application launched
This pre-loads the database with test objects

14

Inspecting the Playlist Table

M| & | @Auocommit “0 ‘0 | Maxrows:[1000 ¢ @ O | |Autocomplete | Of 4 |Autoselect | On 4| (7)

| | jdbc:h2:mem:play Run Run Selected Auto complete Clear SQL statement:
=l L playlist SELECT * FROM PLAYLIST

d id

g duration

0 title

|2, Indexes
= [playlist song
1 playlist_id
7 songs id
|2, Indexes

= & song SELECT * FROM PLAYLIST:
o id
: ID DURATION TITLE
o artist
7 duration 10 Bethoven Sonatas
A title 2 0 Bethoven Concertos
|2, Indexes (2 rows, 3 ms)
() information_schema
sas Sequences Edit

{#} Users
(i) H2 1.4.193 (2016-10-31)

localhost:9000/@db

Inspecting the Songs Table

\:/

M| & | @ Autocommit “0 7D | Maxrows: | 1000 4| (3 ()] | s | Auto complete | Off 4| Autoselect | On 4| ()

| | jdbc:h2:mem:play Run | Run Selected 'Auto complete |Clear SQL statement:
=l 2 playlist SELECT * FROM PLAYLIST_SONG

g id

0 duration

0 title

|2, Indexes
=] playlist_song
1 playlist_id
7 songs id
|2, Indexes

()

= song SELECT * FROM PLAYLIST _SONG:

g 'd_ PLAYLIST ID SONGS ID
] artist 1

0 duration L
7 title 1
|2, Indexes 1
information_schema 2
2

2

RECRCECRCEE

+ =52 Sequences
{#? Users
H2 1.4.193 (2016-10-31)

(o)RR & R N L I

SEERERE

(6 rows, 4 ms)

Edit

localhost:9000/@db

