
Using Methods

Produced
by:

Department of Computing and Mathematics
http://www.wit.ie/

Methods that handle events

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor

Caveat

• The term function is used in Processing e.g. line(), fill(), etc.

• The term method is used in Java.

• As this course is primarily about learning the Java language,
we are planning on using the word method instead of function
from here on in.

Topics list

1. Method terminology:
– Return type
– Method names
– Parameter list

2. Using methods to handle mouse events.

Recap: Methods in Processing

• Processing comes with several pre-written methods that we can use.

• A method comprises a set of instructions that performs some task.

• When we invoke the method, it performs the task.

• Some methods we have used are:
rect(), ellipse(), line(), stroke(), fill(), background(), random(), etc.

Recap: Methods in Processing

• We have also written two methods to animate our drawings:

• void setup()
• automatically called once when the program starts

and should not be called again.
• It typically sets up your display window

e.g. screen size, background colour.

• void draw()
• automatically called straight after the setup() call.
• It continuously executes the code contained inside it.

Method terminology

void setup()
{

size(640, 360);
background(120);

}

Method signature / header

Method body

Method signature

void setup()

Return type Method
name

Parameter list

Topics list

1. Method terminology:
– Return type
– Method names
– Parameter list

2. Using methods to handle mouse events.

Return Type: void

• Methods can return information.
• The void keyword just before the method name means that

nothing is returned from the method.
• void is a return type and must be included in the method

signature, if your method returns no information.

Return Type: int

• When a data type (e.g. int) appears before the method name,
this means that something is returned from the method.

• Within the body of the method,
you use the return statement to return the value.

Return Type: int

int val = 30;

void draw()
{

int result = timestwo(val);
println(result);

}

int timestwo(int number)
{

number = number * 2;
return number;

}

// The red int in the function declaration
// specifies the type of data to be returned.

https://processing.org/reference/return.html

https://processing.org/reference/return.html

Return Types

• Methods can return any type of data e.g.
– boolean
– byte
– char
– int
– float
– String
– etc.

• You can only have one return type per method.

Topics list

1. Method terminology:
– Return type
– Method names
– Parameter list

2. Using methods to handle mouse events.

Method name

• Method names should:

– Use verbs (i.e. actions) to describe what the method does
e.g.
• calculateTax
• printResults

– Be mixed case with the first letter lowercase
and the first letter of each internal word capitalised.
i.e. camelCase

Topics list

1. Method terminology:
– Return type
– Method names
– Parameter list

2. Using methods to handle mouse events.

Parameter list

• Methods take in data via their parameters.

• Methods do not have to pass parameters
e.g. setup() has no parameters.

void noStroke()
void setup()
void noCursor()

Methods with NO parameters

• Methods do not have to pass parameters.
• These methods have no parameters;

note how no variable is passed in the parenthesis i.e. ().
• These methods don’t need any additional information to do its tasks.

void strokeWeight(float weight)

void size(int width, int height)

Methods with Parameters

• A parameter is a variable declaration –
– it has a type (e.g. int)

and a name (e.g. width).
• If a method needs additional information to execute,

we provide a parameter, so that the information can be passed into it.
• The first method, strokeWeight, above has one parameter.
• A second method size can have any number of parameters

e.g. the second method, has two

Topics list

1. Method terminology:
– Return type
– Method names
– Parameter list

2. Using methods to handle mouse events.

Mouse actions and their methods

Action Description Method

Clicked Mouse button is pressed
and then released mouseClicked()

Pressed Mouse button is pressed
and held down mousePressed()

Released Mouse button was pressed,
but now released mouseReleased()

Moved Mouse is moved
without any buttons being pressed mouseMoved()

Dragged Mouse is moved
with a button pressed mouseDragged()

Mouse methods

• Mouse and keyboard events only work when a program
has draw().

• Without draw(), the code is only run once and then stops
listening for events.

https://processing.org/reference/mousePressed_.html

https://processing.org/reference/mousePressed_.html

EXAMPLE 2.5

Processing Example 3.1 – setup()

Based on: http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

Processing Example 3.1 – draw()

Based on: http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

Processing Example 3.1 – draw()

Q: Why did we include the draw() method,
particularly as it is empty?

Based on: http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

Processing Example 3.1 – draw()

A: draw() is required because
mouse events only work when a program has it.

Based on: http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

Processing Example 3.1 – mouseMoved()

Based on: http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

Processing Example 3.1 – mouseDragged()

Based on: http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

Processing Example 3.1 – mouseReleased()

Based on: http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

Processing Example 3.1 – mousePressed ()

Based on: http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

http://learning.codasign.com/index.php?title=Mouse_Events_in_Processing

Some previous exercises

• We will now re-work the following examples that we covered
previously:
– Example 2.5
– Example 2.6
– Example 2.7
– Example 2.8

• Each of these exercises tested the mousePressed variable.
– Now we want them to use the mousePressed() method instead.

EXAMPLE 2.5

Recap: Processing Example 2.5

Functionality:

• If the mouse is pressed:

– draw a gray square with a white outline.

– otherwise draw a gray circle with a white outline.

Recap: Processing Example 2.5

Example 2.5 (v2) – using mouse methods instead

void setup()
{

size(100,100);
stroke(255);
fill(150);
background(0);
ellipse(45,45,34,34);

}

void draw(){
}

void mousePressed(){
background(0);
rect(45,45,34,34);

}

void mouseReleased(){
background(0);
ellipse(45,45,34,34);

}

Before VS After
void setup() {

size(100,100);
stroke(255);
fill(150);
background(0);
ellipse(45,45,34,34);

}

void draw(){
} void mousePressed(){

background(0);
rect(45,45,34,34);

}

void mouseReleased(){
background(0);
ellipse(45,45,34,34);

}

EXAMPLE 2.6

Recap: Processing Example 2.6

Functionality:

• If the mouse is pressed:
– set the fill to white and draw a square.

– otherwise set the fill to black and draw a square.

Recap: Processing Example 2.6

Example 2.6 (v2) – using mouse methods instead

void setup()
{

size(100,100);
background(204);
fill(0);

}

void draw(){
rect(25, 25, 50, 50);

}

void mousePressed(){
fill(255);

}

void mouseReleased(){
fill(0);

}

Before VS After

void setup() {
size(100,100);
background(204);
fill(0);

}

void draw(){
rect(25, 25, 50, 50);

}
void mousePressed(){

fill(255);
}

void mouseReleased(){
fill(0);

}

EXAMPLE 2.7

Recap: Processing Example 2.7
Functionality:

• If the LEFT button on the mouse is pressed,
set the fill to black and draw a square.
As soon as the LEFT button is released, gray fill the square.

• If the RIGHT button on the mouse is pressed,
set the fill to white and draw a square.
As soon as the RIGHT button is released, gray fill the square.

• If no mouse button is pressed,
set the fill to gray and draw a square.

Recap: Processing Example 2.7

Example 2.7 (v2) – using mouse methods instead

void setup()
{

size(100,100);
background(204);
fill(126);

}

void draw(){
rect(25, 25, 50, 50);

}

void mousePressed(){
if (mouseButton == LEFT)

fill(0); // black
else if (mouseButton == RIGHT)

fill(255); // white
}

void mouseReleased(){
fill(126);

}

Before VS After

void setup() {
size(100,100);
background(204);
fill(126);

}

void draw(){
rect(25, 25, 50, 50);

}
void mousePressed(){

if (mouseButton == LEFT)
fill(0); // black

else if (mouseButton == RIGHT)
fill(255); // white

}

void mouseReleased(){
fill(126);

}

EXAMPLE 2.8

Recap: Processing Example 2.8
Functionality:
– Draw a circle on the mouse (x,y) coordinates.

– Each time you move the mouse, draw a new circle.

– All the circles remain in the sketch,
until you press a mouse button.

– When you press a mouse button,
the sketch is cleared and a single circle is drawn
at the mouse (x,y) coordinates.

Recap: Processing Example 2.8

https://processing.org/tutorials/interactivity/

https://processing.org/tutorials/interactivity/

Example 2.5 (v2) – using mouse methods instead

void setup()
{

size(500,400);
background(0);
stroke(255);
fill(45,45,45);

}

void draw(){
ellipse(mouseX, mouseY, 100, 100);

}

void mousePressed(){
background(0);

}

Before VS After
void setup()
{
size(500,400);
background(0);
stroke(255);
fill(45,45,45);

}

void draw(){
ellipse(mouseX, mouseY, 100, 100);

}
void mousePressed(){

background(0);
}

EXAMPLE 2.5 (V3)

Example 2.5 (v3) – using mouse methods instead

void setup()
{

size(500,400);

background(0);
stroke(255);
fill(45,45,45);

}

void draw(){
}

void mouseMoved(){
ellipse(mouseX, mouseY, 100, 100);

}

void mouseClicked(){
background(0);
ellipse(mouseX, mouseY, 100, 100);

}

Before VS After
void setup()
{
size(500,400);
background(0);
stroke(255);
fill(45,45,45);

}

void draw(){
}

void mouseMoved(){
ellipse(mouseX, mouseY, 100, 100);

}

void mouseClicked(){
background(0);
ellipse(mouseX, mouseY, 100, 100);

}NOTE: draw is empty. Why do we include it?

Questions?

