
Primitive Arrays

Produced
by:

Department of Computing and Mathematics
http://www.wit.ie/

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor

Topics list

• Why arrays?

• Primitive Arrays

• Array Syntax

Why arrays?

• We look at different pieces of code to explain the concept.

• In each piece of code, we:
– read in 10 numbers from the keyboard
– add the numbers
– print the sum of all the numbers.

• Arrays allow us to reduce the amount of code that’s
needed to solve problems

Source: Reas & Fry (2014)

import javax.swing.JOptionPane;

int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = Integer.parseInt

(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += n;
}

println("The sum of the values you typed in is : " + sum);

Adding 10 numbers

Source: Reas & Fry (2014)

Reads in 10 numbers
from the keyboard

import javax.swing.JOptionPane;

int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = Integer.parseInt

(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += n;
}

println("The sum of the values you typed in is : " + sum);

Adding 10 numbers

Source: Reas & Fry (2014)

As each number is entered,
it is added to the value
currently stored in sum.

import javax.swing.JOptionPane;

int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = Integer.parseInt

(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += n;
}

println("The sum of the values you typed in is : " + sum);

Adding 10 numbers

Source: Reas & Fry (2014)

When the 10 numbers
have been read in,

the sum of the 10 numbers
is printed to the console.

Adding 10 numbers

Source: Reas & Fry (2014)

import javax.swing.JOptionPane;

int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = Integer.parseInt

(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += n;
}

println("The sum of the values you typed in is : " + sum);

Notice that,
each time a number is read in,

it overwrites the value stored in n.

It doesn’t remember
the individual numbers typed in.

Rule – Never lose input data

• Always try to store input data for later use

• In real-life systems,
you nearly always need to use it again.

• The previous code has NOT done this.
– Let’s try another way ...

Remembering the Numbers

int n0,n1, n2, n3, n4, n5, n6, n7, n8, n9;
int sum = 0;

n0 = Integer.parseInt (JOptionPane.showInputDialog("Please enter a number ", "3"));
sum += n0;

n1 = Integer.parseInt (JOptionPane.showInputDialog("Please enter a number ", "3"));
sum += n1;

//rest of code for n2 to n8

n9= Integer.parseInt(JOptionPane.showInputDialog("Please enter a number ", "3"));
sum += n9;

println("The sum of the values you typed in is : " + sum);

This works in the sense that we have
retained the input data.

BUT…we no longer use loops.

Imagine the code if we had to read in
1,000 numbers?

We need a new approach…

This is where data structures come in!

We will now look at arrays.

Topics list

• Why arrays?

• Primitive Arrays

• Array Syntax

Arrays (fixed-size collections)

• Arrays are a way to collect associated values.

• Programming languages usually offer a special
fixed-size collection type: an array.

• Java arrays can store
– objects
– primitive-type values.

• Arrays use a special syntax.

Primitive types

17

Primitive type

int num = 17;

Directly stored
in memory…

• We are now going to look at a structure
that can store many values of the same type.

• Imagine a structure made up of sub-divisions
or sections…

• Such a structure is called an array
and would look like…

Structure of a primitive array

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Structure of a primitive array

int[] numbers; numbers
null

Structure of a primitive array

int[] numbers; numbers

0 0
1 0
2 0
3 0

numbers = new int[4];

Structure of a primitive array

int[] numbers; numbers

0 0
1 0
2 0
3 0

numbers = new int[4];

We have declared an array of int,
with a capacity of four.

Each element is of type int.

The array is called numbers.

Structure of a primitive array

int[] numbers; numbers

0 0
1 0
2 0
3 0

Index of each
element in the array

numbers = new int[4];

Structure of a primitive array

int[] numbers; numbers

0 0
1 0
2 0
3 0

Default value for each
element of type int.

numbers = new int[4];

Structure of a primitive array

int[] numbers; numbers

0 0
1 0
2 18
3 0

numbers[2] = 18;

numbers = new int[4];

We are directly accessing the
element at index 2

and setting it to a value of 18.

Structure of a primitive array

int[] numbers; numbers

0 12
1 0
2 18
3 0

numbers[0] = 12;

numbers = new int[4];

numbers[2] = 18;

We are setting the
element at index 0

and to a value of 12.

Structure of a primitive array

int[] numbers; numbers

0 12
1 0
2 18
3 0

numbers[0] = 12;

numbers = new int[4];

numbers[2] = 18;

Here we are printing the contents of
index location 2

i.e. 18 will be printed to the console.

print(numbers[2]);

Topics list

• Why arrays?

• Primitive Arrays

• Array Syntax

Declaring a primitive array

int[] numbers;
//somecode
numbers = new int[4];

numbers

0 0
1 0
2 0
3 0

This is how we
previously

declared our
array of four int,
called numbers.

Declaring a primitive array
int[] numbers;

//somecode
numbers = new int[4];

numbers

0 0
1 0
2 0
3 0

We can also
(combine both statements)

and declare it like
this…

int[] numbers = new int[4];
Numbers is an array of integers,
initialized to be an integer array of size 4

Declaring a primitive array

int[] numbers = new int[4];

Numbers is an array of integers,
initialized to be an integer array of size 4

int numbers[] = new int[4];

Is the same as

Let’s returning to our method
that reads in, and sums, 10 numbers

(typed in from the keyboard)…

We’ll change it
to use primitive arrays…

Version that doesn’t save the numbers

Source: Reas & Fry (2014)

import javax.swing.JOptionPane;

int n;
int sum = 0;

for (int i = 0; i<10; i++) {
n = Integer.parseInt

(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += n;
}

println("The sum of the values you typed in is : " + sum);

Notice that,
each time a number is read in,

it overwrites the value stored in n.

It doesn’t remember
the individual numbers typed in.

import javax.swing.JOptionPane;

int numbers[] = new int[10];
int sum = 0;

//read in the data
for (int i = 0; i < 10 ; i ++) {

numbers[i] = Integer.parseInt(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

}

// now we sum the values
for (int i = 0; i < 10 ; i ++) {

sum += numbers[i];
}

println("The sum of the values you typed in is : " + sum);

Using arrays to remember numbers

Source: Reas & Fry (2014)

Using an array
to store each value
that was entered.

Using arrays to remember numbers
import javax.swing.JOptionPane;

int numbers[] = new int[10];
int sum = 0;

//read in the data
for (int i = 0; i < 10 ; i ++) {

numbers[i] = Integer.parseInt(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

}

// now we sum the values
for (int i = 0; i < 10 ; i ++) {

sum += numbers[i];
}

println("The sum of the values you typed in is : " + sum);
Source: Reas & Fry (2014)

Q: Can we reduce the code to only have
one loop?

Could we move the “sum” code
into the first loop?Loop 1

Loop 2

Using arrays to remember numbers

import javax.swing.JOptionPane;

int numbers[] = new int[10];
int sum = 0;

//read in the data and sum the values
for (int i = 0; i < 10 ; i ++) {

numbers[i] = Integer.parseInt(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += numbers[i];
}

println("The sum of the values you typed in is : " + sum);

Source: Reas & Fry (2014)

A: Yes.

Move the “sum” code into the first loop.
-> functionality doesn’t change

Loop 1

What if we wanted the user to decide
how many numbers

they wanted to sum?

Source: Reas & Fry (2014)

import javax.swing.*;

int sum = 0;

//Using the numData value to set the size of the array
int numbers[];
int numData = Integer.parseInt (JOptionPane.showInputDialog(

"How many values do you wish to sum? ", "3"));
numbers = new int [numData];

//read in the data and sum the values
for (int i = 0; i < numData ; i ++) {

numbers[i] = Integer.parseInt(JOptionPane.showInputDialog(
"Please enter a number ", "3"));

sum += numbers[i];
}

println("The sum of the values you typed in is : " + sum);

1. Delcare numbers to be an array of type
integer.

2. numData takes in the size.
3. Use numData to initialize the array with

new specifying the size.

What type of data can be stored
in a primitive array?

An array can store ANY TYPE of data.

String words[] = new String[30];

Spot spots[] = new Spot[20];

int numbers[] = new int[10];

byte smallNumbers[] = new byte[4];

char characters[] = new char[26];

Primitive Types

Object Types
String[] words = new String[30];

Spot[] spots = new Spot[20];

Int[] numbers = new int[10];

byte[] smallNumbers = new byte[4];

char[] characters = new char[26];
OR

OR

Do we have to use
all the elements in the array?

Do we have to use all elements in the array?

• No.

• But…this might cause logic errors,
if we don’t take this into consideration
in our coding.

• Consider this scenario…

Scenario – exam results and average grade

• We have a class of 15 students.

• They have a test coming up.

• We want to store the results in an array
and then find the average result.

We create an array of int with a capacity of 15

results

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

12 0

13 0

14 0

Only 12 students sat the exam.
Their results were recorded in the first 12 elements

To calculate the average result,
divide by the number of populated elements
NOT the array capacity.

Average grade

0 40

1 65

2 75

3 75

4 43

5 80

6 90

7 90

8 100

9 60

10 50

11 40

12 0

13 0

14 0

Do we have to use all elements in the array?

• If all elements in an array are NOT populated,
we need to:
– have another variable (e.g. int size)

• containing the number of elements in the array actually used.
– ensure size is used when processing the array

• e.g.
for (int i= 0; i < size; i++)

• For now though,
we assume that all elements of the array
are populated and therefore ready to be processed.

Summary - Arrays
• Arrays are structures that can store many values of the same type
• Rule – Never lose input data
– Arrays enable us to store the data efficiently
– We can use loops with arrays

• Arrays can store ANY type
• Declaring arrays

• Index goes from 0 to size-1

int[] arryName;
//somecode
arryName= new int[4];

int[] arryName= new int[4];

OR

0 1 2 3

int arryName[];
//somecode
arryName = new int[4];

int arryName[] = new int[4];

OR

OR

Questions?

