
Game of Pong

Produced
by:

Department of Computing and Mathematics
http://www.wit.ie/

V3

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor

Pong Versions - introduction

v1 - Ball moving from left to right of screen. Can bounce off top or bottom
v2 - Mouse controlling the Paddle

v3 - Collision detection (ball bounces back). Changes made only to PongGame
v4 - Game Over (when 3 lives gone), Score (lives Lost). Output to Console. Changes made only to PongGame.
v5 - Tournament (no of games per tournament default is 5). Changes made only to PongGame.

v6 - new Player class using arrays (no statistics)
v7 - Player class using arrays (with statistics (Tournament Over - highest, lowest, average score))
v8 - JOptionPane for I/O instead of console
v9 - alternative algorithm using Pythagoras Theorem

Demo of
Pong Game V3.0

Classes in the PongGameV3.0
Ball

xCoord
yCoord
diameter
speedX
speedY
Ball(float)
update()
display()
hit()
getXCoord()
getYCoord()
getDiameter()
setDiameter(float)
resetBall()

PongGame
ball
paddle
setup()
draw()
hitPaddle (paddle, ball)

Ball and Paddle classes à no change

Paddle

Xcoord
yCoord
paddleHeight
paddleWidth

Paddle(int, int)
update()
display()
getXCoord()
getYCoord()
getPaddleWidth()
getPaddleHeight()
setPaddleWidth(int)
setPaddleHeight(int)

In PongGame, draw() is updated to
call the new hitPaddle() method.

hitPaddle uses a collision detection
algorithm
• if the paddle and ball are touching

• returns true
• false otherwise.

Collision Detection Algorithm used in hitPaddle

Method signature:
boolean hitPaddle (Paddle paddle, Ball ball)

Algorithm:
1) Measure the size of the gap between the paddle and the ball.

2) If the ball is too far away from the Paddle on the X axis to have a collision
à return false

3) If the ball is too far away from the Paddle on the Y axis to have a collision
à return false

4) Otherwise
à return true.

• The default ellipse mode is CENTER
– This means x & y positions for ellipse()

specify the center of the ellipse

– At the max width of the window,
half the ellipse is seen

– If we specify an x value > width + radius of the circle
the circle has left the screen

Recap – Drawing Modes: ellipse

• The default rect mode is CORNER
– This means x & y positions for rect()

specify the top left CORNER of the rectangle

– At the max width of the window,
the rectangle would be invisible

– If we specify an x value which is
the width of the screen – width of the rectangle
it will be seen

Recap – Drawing Modes: rect

1) Measuring size of the gap
between the paddle and ball.

We need to first calculate how far away the ball is
from the paddle on both the x and the y axis e.g.:

circleDistanceX

circleDistanceY

circleDistanceX

circleDistanceY

circleDistanceX

circleDistanceY

circleDistanceY = distance from center of circle to center of paddle
circleDistanceX = distance from center of circle to left edge of paddle

circleDistanceX

circleDistanceY

boolean hitPaddle (Paddle paddle, Ball ball)
{

//These variables measure the magnitude of the gap between the paddle and ball.
float circleDistanceX

= abs(ball.getXCoord() - paddle.getXCoord());
float circleDistanceY

= abs(ball.getYCoord() - paddle.getYCoord() - paddle.getPaddleHeight()/2);

}

circleDistanceX

circleDistanceY

1) Measuring size of the gap
between the paddle and ball.

(0,0)

(0,height) (width,height)

(width,0)

Questions

Q1: What is the circleDistanceX
if the circle is at (200,400)
And the paddle is at (380,100)
with a paddle height of 100?

Q2: What is the circleDistanceY
if the circle is at (200,400)
And the paddle is at (380,100)
with a paddle height of 100?

Collision Detection Algorithm

Method signature:
boolean hitPaddle (Paddle paddle, Ball ball)

Algorithm:
1) Measure the size of the gap between the paddle and the ball.

2) If the ball is too far away from the Paddle on the X axis to have a collision
à return false

3) If the ball is too far away from the Paddle on the Y axis to have a collision
à return false

4) Otherwise
à return true.

2) If ball is too far away from the Paddle
on the X axis à return false

//The Ball is too far away from the Paddle on the X axis
// to have a collision,
// so abandon collision detection

if (circleDistanceX > (ball.getDiameter()/2)) {
return false;

}

If ball is too far away from the Paddle
on the X axis à return false

Collision Detection Algorithm

Method signature:
boolean hitPaddle (Paddle paddle, Ball ball)

Algorithm:
1) Measure the size of the gap between the paddle and the ball.

2) If the ball is too far away from the Paddle on the X axis to have a collision
à return false

3) If the ball is too far away from the Paddle on the Y axis to have a collision
à return false

4) Otherwise
à return true.

//The Ball is too far away from the Paddle on the Y axis to have a collision,
//so abandon collision detection

if (circleDistanceY >
(paddle.getPaddleHeight()/2 + ball.getDiameter()/2)) {

return false;
}

If ball is too far away from the Paddle
on the Y axis à return false

3) If ball is too far away from the Paddle
on the Y axis à return false

return false return true

Collision Detection Algorithm

Method signature:
boolean hitPaddle (Paddle paddle, Ball ball)

Algorithm:
1) Measure the size of the gap between the paddle and the ball.

2) If the ball is too far away from the Paddle on the X axis to have a collision
à return false

3) If the ball is too far away from the Paddle on the Y axis to have a collision
à return false

4) Otherwise
à return true.

//We have a collision
return true;

We have a collision

4) Otherwise return true

return true

boolean hitPaddle (Paddle paddle, Ball ball)
{
//These variables measure the magnitude of the gap between the paddle and ball.
float circleDistanceX

= abs(ball.getXCoord() - paddle.getXCoord());
float circleDistanceY

= abs(ball.getYCoord() - paddle.getYCoord() - paddle.getPaddleHeight()/2);

//The Ball is too far away from the Paddle on the X axis to have a collision,
//so abandon collision detection
if (circleDistanceX > (ball.getDiameter()/2)) {

return false;
}

//The Ball is too far away from the Paddle on the Y axis to have a collision,
//so abandon collision detection
if (circleDistanceY > (paddle.getPaddleHeight()/2 + ball.getDiameter()/2)) {

return false;
}
//We have a collision
return true;

}
hitPaddle()

1

2

3

4

hitPaddle (paddle, ball) method
• Call the hitPaddle (paddle,ball) method from the draw() method

in our main PongGame class.
• Which in turn calls ball.hit() if true

void draw (){
background(0); //Clear the background
paddle.update(); //Update the paddle location in line with the cursor
paddle.display(); //Draw the paddle in this new location
ball.update(); // update the ball position.
ball.display(); //Draw the ball at its new location

//Set variable to true if ball and paddle are overlapping, false if not
boolean collision = hitPaddle (paddle, ball);

if (collision == true){
ball.hit(); //the ball is hit i.e. reverse direction.

}
}

Questions?

References

• Reas, C. & Fry, B. (2014) Processing – A Programming
Handbook for Visual Designers and Artists, 2nd Edition, MIT
Press, London.

