
Game of Pong

Produced
by:

Department of Computing and Mathematics
http://www.wit.ie/

V7 Developing the game further

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor

Pong Versions - introduction

v1 - Ball moving from left to right of screen. Can bounce off top or bottom
v2 - Mouse controlling the Paddle

v3 - Collision detection (ball bounces back). Changes made only to PongGame
v4 - Game Over (when 3 lives gone), Score (lives Lost). Output to Console. Changes made only to PongGame.
v5 - Tournament (no of games per tournament default is 5). Changes made only to PongGame.

v6 - new Player class using arrays (no statistics)
v7 - Player class using arrays (with statistics (Tournament Over - highest, lowest, average score))
v8 - JOptionPane for I/O instead of console
v9 - alternative algorithm using Pythagoras Theorem

Demo of
Pong Game V7.0

Classes in the PongGameV7.0
Ball

xCoord
yCoord
diameter
speedX
speedY

Ball(float)
update()
display()
hit()
getXCoord()
getYCoord()
getDiameter()
setDiameter(float)
resetBall()

PongGame
ball
paddle
player
livesLost
score
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed
setup()
draw()
resetGame()
tournamentOver()
hitPaddle(paddle, ball)

Paddle

Xcoord
yCoord
paddleHeight
paddleWidth

Paddle(int, int)
update()
display()
getXCoord()
getYCoord()
getPaddleWidth()
getPaddleHeight()
setPaddleWidth(int)
setPaddleHeight(int)

Player
playerName
scores
count

addScore(int)
getPlayerName()
getScores()
getCount()
setPlayerName(String)
setScores(int[])
lowestScore()
highestScore()
averageScore()
toString()

We introduce calculating simple stats
on a player’s tournament.

These are reported at the end of the tournament.

Methods to calculate statistics

• When the players tournament is over, we calculate the player’s
• highest score
• lowest score.
• average score.

• Values are calculated within the Player class
• as we have enough data there to do this (scores array).

• These methods are then called from the tournamentOver()
method in the PongGame class.

highestScore()
public int highestScore () {

int highestScore = scores[0];

for(int i = 1; i < count; i++){

if (scores[i] > highestScore){

highestScore = scores[i];

}

}

return highestScore;

}

Player

playerName
scores
count

addScore
getPlayerName()
getScores()
getCount()
setPlayerName(String)
setScores(int[])
lowestScore()
highestScore()
averageScore()
toString()

We use a variable (highestScore) to store the highest

score we have seen in the scores array so far.

If the next value in the array is larger than this

highest so far value, then we make the highest value

equal this new highest value.

lowestScore()
public int lowestScore() {

int lowestScore = scores[0];

for(int i = 1; i < count; i++){
if (scores[i] < lowestScore){

lowestScore = scores[i];
}

}
return lowestScore;
}

Player
playerName
scores
count

addScore
getPlayerName()
getScores()
getCount()
setPlayerName(String)
setScores(int[])
lowestScore()
highestScore()
averageScore()
toString()

We use a variable (lowestScore) to store the lowest
score we have seen in the scores array so far.

If the next value in the array is smaller than this
lowest so far value, then we make the lowest value
equal this new lowest value.

averageScore()
public int averageScore() {

int total = 0;

for(int i = 0; i < count; i++){
total = total + scores[i];

}

return total / count;
}

Player
playerName
scores
count

addScore
getPlayerName()
getScores()
getCount()
setPlayerName(String)
setScores(int[])
lowestScore()
highestScore()
averageScore()
toString()

We total up all the scores and get the average by
dividing the sum by the number of values (in count).

Where the stats methods are used…
void tournamentOver(){
println ("Game Over!\n");
println (player.getPlayerName()

+ ", your tournament is over!\n"
+ "Number of games played: ”
+ numberOfGamesPlayed
+ "\n\n"
+ player.toString()
+ "\n\nHighest Score: " + player.highestScore()
+ "\nLowest Score: ” + player.lowestScore()
+ "\nAverage Score: " + player.averageScore());

exit();
}

This method calls the stats methods on the player object:
player.highestScore
player.lowestScore
player.averageScore

PongGame
ball
paddle
player
livesLost
score
maxLivesPerGame
maxNumberOfGames
numberOfGamesPlayed
setup()
draw()
resetGame()
tournamentOver()
hitPaddle(paddle, ball)

A few things to note

• We did not need to change any methods in
Paddle or Ball during this version update.

• The changes to Player and PongGame methods
did not effect the other methods already
written.

Questions?

References

• Reas, C. & Fry, B. (2014) Processing – A Programming
Handbook for Visual Designers and Artists, 2nd Edition, MIT
Press, London.

