
Recap of OO concepts

Produced
by:

Department of Computing and Mathematics
http://www.wit.ie/

Objects, classes, methods and more.

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor
Dr. Frank Walsh

Classes and Objects

• A class
– defines a group of related methods (functions)

and fields (variables / properties).

Classes and Objects

• An object
– is a single instance of a class
– i.e. an object is created (instantiated) from a class.

String a;String is
the Class

“Hello”
a is the Object,

which contains “Hello”

&FFCC

&FFCC

Classes and Objects – Many Objects

• Many objects can be constructed from a single class definition.

• Each object must have a unique name within the program.

SHOP
Ver 1.0

Shop V1.0 - Driver
• The Driver class
– has the main() method.
– reads the product details from the user (via the console)
– creates a new Product object.
– prints the product object

(to the console)

• Driver is covered in the next slide deck.

Driver

Product

Shop V1.0 - Product

• We will recap object oriented concepts through the study of a
new class called Product.

Driver

Product

Shop V1.0 - Product

• The Product class stores details
about a product
– name
– code
– unit cost
– in the current product line or not?

Driver

Product

A Product Class…

Object Type/ Class Name
i.e. Product

The C icon means it is a Class.

The open padlock means it is public.

A Product Class…fields

Fields
i.e. the attributes / properties
of the class

The f icon means it is a field.

The closed padlock means it
is private.

field name

field type

A Product Class… constructor
Constructor
i.e. for building objects.

The m icon means it is a method.

The open padlock means it is public.

Constructors have same name as the class

Four parameters;
one for each field.

A Product Class… fields and constructor

public class Product {

private String productName;
private int productCode;
private double unitCost;
private boolean inCurrentProductLine;

public Product (String productName, int productCode,
double unitCost, boolean inCurrentProductLine){

this.productName = productName;
this.productCode = productCode;
this.unitCost = unitCost;
this.inCurrentProductLine = inCurrentProductLine;

}

A Product Class… methods

Methods
i.e. the behaviours of the class

The m icon means it is a method.

The open padlock means it is public.

Method name

Return type

A Product Class… getters

getters

Getters (Accessor Methods)

• Accessor methods
– return information about the state of an object

• i.e. the values stored in the fields.

• A ‘getter’ method
– is a specific type of accessor method and typically:

• contains a return statement
(as the last executable statement in the method).

• defines a return type.
• does NOT change the object state.

Getters

public double getUnitCost()
{

return unitCost;
}

return type
method name

parameter list
(empty)

start and end of method body (block)

return statement

visibility modifier

A Product Class…getters

public String getProductName(){
return productName;

}

public double getUnitCost(){
return unitCost;

}

public int getProductCode() {
return productCode;

}

public boolean isInCurrentProductLine() {
return inCurrentProductLine;

}

A Product Class…setters

setters

Setters (Mutator methods)

• Mutator methods
– change (i.e. mutate!) an object’s state.

• A ‘setter’ method
– is a specific type of mutator method and typically:
• contains an assignment statement
• takes in a parameter
• changes the object state.

Setters

public void setUnitCost(double unitCost)
{

this.unitCost = unitCost;
}

return type

method name parametervisibility modifier

assignment
statement

field being mutated Value passed
as a parameter

A Product Class…setters

public void setProductCode(int productCode) {
this.productCode = productCode;

}

public void setProductName(String productName) {
this.productName = productName;

}

public void setUnitCost(double unitCost) {
this.unitCost = unitCost;

}

public void setInCurrentProductLine(boolean inCurrentProductLine) {
this.inCurrentProductLine = inCurrentProductLine;

}

Getters/Setters

• For each instance field in a class,
you are normally asked to write:

– A getter
• Return statement

– A setter
• Assignment statement

A Product Class…toString

toString():

Builds and returns a String
containing a user friendly representation
of the object state.

A Product Class…
public String toString()
{

return "Product description: " + productName
+ ", product code: " + productCode
+ ", unit cost: " + unitCost
+ ", currently in product line: " + inCurrentProductLine;

}

Product description: 24 Inch TV, product code: 23432, unit cost: 399.99, currently in product line: true

Sample Console Output if we printed a Product Object:

toString()
• This is a useful method and you will write a toString()

method for most of your classes.
• When you print an object,

Java automatically calls the toString() method
e.g.

Product product = new Product();

//both of these lines of code do the same thing
System.out.println(product);
System.out.println(product.toString());

Encapsulation in Java – steps 1-3

http://www.tutorialspoint.com/java/java_encapsulation.htm

Encapsulation Step Approach in Java
1. Wrap the data (fields)
and code acting on the
data (methods)
together as single unit.

public class ClassName
{

Fields
Constructors
Methods

}
2. Hide the fields from
other classes.

Declare the fields of a class as private.

3. Access the fields only
through the methods of
their current class.

Provide public setter and getter
methods to modify and view the fields
values.

http://www.tutorialspoint.com/java/java_encapsulation.htm

1. Product class wraps the data (fields)
and code acting on the data (methods)
together as single unit.

3. Access the fields only
through the methods of Product
(e.g. getter and setter methods).

2. Fields are hidden from other classes.

A Product Class… An Encapsulated Class

Using the Product Class
private Product product;

Declaring an object product,
of type Product.

1
product

null

Using the Product Class
private Product product;

product = new Product(“TV”, 1234, 149.99, true);

Calls the Product constructor
to build the product object in memory.

Declaring an object product,
of type Product.

1

2

product

productName

productCode

“TV”

1234

product

unitCost 149.99

inCurrentProductLine true

Multiple Product Objects
private Product product = new Product(“TV”, 1234, 149.99, true);

product

productName

productCode

“TV”

1234

product

unitCost 149.99

inCurrentProductLine true

Multiple Product Objects
private Product product = new Product(“TV”, 1234, 149.99, true);

product

productName

productCode

“TV”

1234

product

unitCost 149.99

inCurrentProductLine true

private Product phone = new Product(“iPhone 3”, 1001, 349.99, false);

phone

productName

productCode

“iPhone8”

1001

phone

unitCost 799.99

inCurrentProductLine false

Questions?

