
Grouping Objects (lecture 2 of 2)

Produced by:

(based on Ch. 4, Objects First with Java - A Practical Introduction using BlueJ, © David J. Barnes, Michael Kölling)

Department of Computing and Mathematics
http://www.wit.ie/

ArrayList and Iteration

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor
Dr. Frank Walsh

Topic list
• Grouping Objects
– Developing a basic personal notebook project using Collections e.g. ArrayList

• Indexing within Collections
– Retrieval and removal of objects

• Generic classes e.g. ArrayList
• Iteration
– Using the for loop
– Using the while loop
– Using the for each loop

• ShopV3.0 – use an ArrayList of Products
instead of an array.

RECAP:Summary Shop V2.0

Product class stores details of a product’s name, code, unit cost
and whether it is in the current product line or not.

Driver

Product
Store

Some changes

new class

No changes

v2

JVM

RECAP:Summary Shop V2.0

Store class maintains a collection of Products
i.e. an array of Products; store.Products[]

Driver

Product
Store

Some changes

new class

No changes

v2

JVM

RECAP:Summary Shop V2.0

Driver allows the user to decide how many product details they want to store.
Methods updated to work with this new store.Products[] array

Driver

Product
Store

Some changes

new class

No changes

v2

JVM

Shop V3.0

GOAL: use an ArrayList of Products
instead of an array.

v3

Shop V3.0 – changes to classes (refactoring)

Refactor:
any changes to the
Store “interface”
are reflected in

this class

Driver

Product
Store

No changes
JVM

Refactor:
to an ArrayList of Product

from storing Products in an array

PRODUCT
Let’s Look At

Product
No changes

The Product Class
Product

Constructor

getters

setters

toString

fields

Our Product class contains
four fields - instance variables

Product

The constructor uses the data passed in the four parameters
to update the instance fields.

Product

Name Overloading using this.

The class has getters
for each instance field.

Product

public String getProductName(){
return productName;

}

public double getUnitCost(){
return unitCost;

}

public int getProductCode() {
return productCode;

}

public boolean isInCurrentProductLine() {
return inCurrentProductLine;

}

The class has setters
for each instance field.

Product

public void setProductCode(int productCode) {
this.productCode = productCode;

}

public void setProductName(String productName) {
this.productName = productName;

}

public void setUnitCost(double unitCost) {
this.unitCost = unitCost;

}

public void setInCurrentProductLine(boolean inCurrentProductLine) {
this.inCurrentProductLine = inCurrentProductLine;

}

The class has a toString method
to return a String

containing a user-friendly representation
of the object state.

We will call this method from the Store class
that we will construct over the next few slides.

Product

public String toString()
{

return "Product description: " + productName
+ ", product code: " + productCode
+ ", unit cost: " + unitCost
+ ", currently in product line: " + inCurrentProductLine;

}

Store

STORE
Let’s Look At

Refactor:
to an ArrayList of Product

from storing Products in an array

Store

1 field

Constructor

methods

NB: total is gone

Store class - Fields

• The Store class now has just one field called
products
– an ArrayList of Product.

Store

Q: Why don’t we have total anymore?

1. Declaring an ArrayList of Product

import java.util.ArrayList;

public class Store
{

private ArrayList<Product> products;

// constructor
public Store()
{

products = new ArrayList<Product> ();
}

}

importing the
ArrayList class so
we can use it.

declaring an
ArrayList of
Product as a
private instance
variable.

calling the
constructor of the
ArrayList class to
build the ArrayList
object.

Store

NOTE THE SYNTAX

Store class – Methods (1)

These methods work on the ArrayList to:

1. add Products
2. print out the contents
3. print out the cheapest product

Store

Add a product object
to an ArrayList of Product

public void add (Product product)
{

products.add (product);
}

The ArrayList
holds objects of this type

This is an object variable
of type Product
that we want to add
to the ArrayList.

This is the ArrayList of Product.

This is the .add() method
from the ArrayList class that we just imported.

Store

Add a product object
to an ArrayList of Product

import java.util.ArrayList;

public class Store{

private ArrayList<Product> products;

public Store(){
products = new ArrayList<Product> ();

}

public void add (Product product){
products.add (product);

}
}

Store

Store class – Methods (2)

These methods work on the ArrayList to:

1. add Products
2. print out the contents
3. print out the cheapest product

Store

Print out the contents

public String listProducts() {
if (products.size() == 0) {

return "No products";
} else {

String listOfProducts = "";
for (int i = 0; i < products.size(); i++) {

listOfProducts += i + ": " + products.get(i) + "\n";
}
return listOfProducts;

}
}

If the size of the products ArrayList is zero,
return the String “No products” to the Driver class to be printed.

Store

If there are products in the ArrayList…
return a String containing the index number of each product & the product details.

Sample Output

Store class – Methods (3)

These methods work on the ArrayList to:

1. add Products
2. print out the contents
3. print out the cheapest product

Store

Finding the Cheapest Product

Product

getter

private field – unit cost

1. If products have been added to the ArrayList
1.1 Assume that the first Product in the ArrayList is the cheapest
(set a local variable to store this object).
1.2 For all product objects in the ArrayList

1.2.1 if the current product cost is lower than the cost of the product object
stored in the local variable,

1.2.1.1 update the local variable to hold the current product object.
end if

end for
1.3 Return the name of the cheapest product.

else
1.4 Return a message indicating that no products exist.

end if

Finding the Cheapest Product –
Algorithm (numbered steps)

Store

Finding the Cheapest Product
(step 1.)

if products have been added to the ArrayList
// return the cheapest product

else
return a message indicating that no products exist.

end if

Q: How do we write the code for this algorithm?

Working on the outer if statement (step 1.)

Store

if (products.size() != 0){
//return the cheapest product

}
else{

return “No products are in the ArrayList”;
}

Store

Working on step 1.1

if products have been added to the ArrayList
// 1.1 Assume that the first Product in the ArrayList is the cheapest
// (set a local variable to store this object).

else
return a message indicating that no products exist.

end if

Q: How do we write the code for this step?

Store

if (products.size() != 0){
Product cheapestProduct = products.get(0);

}
else{

return “No products are in the ArrayList”;
}

step 1.1
Store

Working on the for loop step 1.2

if products have been added to the ArrayList
// 1.1 Assume that the first Product in the ArrayList is the cheapest
// (set a local variable to store this object).
// 1.2 For all product objects in the ArrayList
// determine the cheapest product
// end for

else
return a message indicating that no products exist.

end if

Q: How do we write the code for this step?

Store

step 1.2

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products)
{
}

}
else{

return “No products are in the ArrayList”;
}

Store

“For each product in the products ArrayList of Product”

for each loop

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products)
{
}

}
else{

return “No products are in the ArrayList”;
}

Product:
This is the type of object
that is stored in the ArrayList.

product:
This is the reference to the current object
we are looking at in the ArrayList. As we
iterate over each object in the ArrayList,
this reference will change to point to the
next object, and so on.

products:
This is the ArrayList of Product.

Store

Store step 1.2.1
1. If products have been added to the ArrayList

1.1 Assume that the first Product in the ArrayList is the cheapest
(set a local variable to store this object).

1.2 For all product objects in the ArrayList
1.2.1 if the current product cost is lower than the cost of
the product object stored in the local variable,

1.2.1.1 update the local variable to hold the
current product object.

end if
end for

1.3 Return the name of the cheapest product.
else

1.4 Return a message indicating that no products exist.
end if

Q: How do we write the code for this step?

step 1.2.1

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products){

if (product.getUnitCost() < cheapestProduct.getUnitCost())
{
}

}
}
else
{

return “No products are in the ArrayList”;
}

Store

Step 1.2.1.1

Q: How do we write the code for this step?

Store

1. If products have been added to the ArrayList
1.1 Assume that the first Product in the ArrayList is the cheapest

(set a local variable to store this object).
1.2 For all product objects in the ArrayList

1.2.1 if the current product cost is lower than the cost of
the product object stored in the local variable,

1.2.1.1 update the local variable to hold the current product object.
end if

end for
1.3 Return the name of the cheapest product.
else
1.4 Return a message indicating that no products exist.
end if

Step 1.2.1.1

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products){

if (product.getUnitCost() < cheapestProduct.getUnitCost()){
cheapestProduct = product;

}
}

}
else{

return “No products are in the ArrayList”;
}

Store

Working on the last step, 1.3

1. If products have been added to the ArrayList
1.1 Assume that the first Product in the ArrayList is the cheapest

(set a local variable to store this object).
1.2 For all product objects in the ArrayList

1.2.1 if the current product cost is lower than the cost of the product object
stored in the local variable,

1.2.1.1 update the local variable to hold the current product object.
end if

end for
1.3 Return the name of the cheapest product.

else
1.4 Return a message indicating that no products exist.

end if

Q: How do we write the code for this step?

Store

step, 1.3

if (products.size() > 0){
Product cheapestProduct = products.get(0);
for (Product product : products){

if (product.getUnitCost() < cheapestProduct.getUnitCost()){
cheapestProduct = product;

}
}
return cheapestProduct.getProductName();

}
else{

return “No products are in the ArrayList”;
}

Store

DRIVER
Let’s Look At

Refactor:
any changes to the
Store “interface”
are reflected in

this class

Driver

JVM

Store

Constructor

store = new Store(numberProducts);

store = new Store();

Previously our Shop used an
array and we needed to know
how many Products to store:

Driver
JVM

Now that we are using an ArrayList,
we don’t need to set a capacity,
so our constructor call becomes:

Driver
JVM

Next Time, we’ll add a menu system in the Driver class.

Right now, the user has no control over whether they want to add,
list, etc products i.e.:

Collections
• Allow an arbitrary number of objects to be stored.

• Are implemented in Java’s Class libraries
which contain tried-and-tested collection classes.

• In Java, class libraries are called packages.

• We have used the ArrayList class from the java.util package.

ArrayList
• Items may be added and removed.

• Each item has an index.

• Index values may change if items are removed
(or further items added).

• The main ArrayList methods are:
– add()
– get()
– remove()
– size()

• ArrayList is a parameterized or generic type.

Questions?

