
Inheritance

Produced
by:

Department of Computing and Mathematics
http://www.wit.ie/

Improving Structure with Inheritance

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor
Dr. Frank Walsh

Lectures and Labs

• This weeks lectures and labs are based on examples in:

– Objects First with Java - A Practical Introduction using BlueJ, © David
J. Barnes, Michael Kölling (https://www.bluej.org/objects-first/)

https://www.bluej.org/objects-first/

Topic List
1. Social Network V1
2. Inheritance hierarchies
3. Social Network V2
4. Coding inheritance hierarchies

– Super and subclasses
– Using constructors in these hierarchies

5. Social Network V3
– Deeper hierarchies
– Advantages of using inheritance

6. Subtyping and Substitution
7. Polymorphic variables / Collections

– Includes casting, wrapper classes, autoboxing /unboxing

Social Network V1

• A small, prototype SOCIAL NETWORK.

• Supports a News Feed with posts.

• POSTS:
–MessagePost:

• multi-line text message.

– PhotoPost:
• photo and caption.

– Operations
• e.g., search, display and remove.

v1

SOCIAL NETWORK

NEWS FEED

POSTS

Multi Line Text

Photo

Social Network V1 - Objects

MessagePost: multi-line text message. PhotoPost: photo and caption.

one object per post; each object stores details for one particular post.

Social Network V1 - Classes

Social Network V1 - Object model

Social Network V1 - Class diagram

MessagePost
source code

public class MessagePost
{

private String username;
private String message;
private long timestamp;
private int likes;
private ArrayList<String> comments;

public MessagePost(String author, String text)
{

username = author;
message = text;
timestamp = System.currentTimeMillis();
likes = 0;
comments = new ArrayList<String>();

}

public void addComment(String text) ...

public void like() ...

public void display() ...

...
}

Just an outline…

public class PhotoPost
{

private String username;
private String filename;
private String caption;
private long timestamp;
private int likes;
private ArrayList<String> comments;

public PhotoPost(String author, String filename,
String caption)

{
username = author;
this.filename = filename;
this.caption = caption;
timestamp = System.currentTimeMillis();
likes = 0;
comments = new ArrayList<String>();

}

public void addComment(String text) ...

public void like() …

public void display() …
...

}

PhotoPost
source code

Just an outline…

NewsFeed
source code

public class NewsFeed
{

private ArrayList<MessagePost> messages;
private ArrayList<PhotoPost> photos;
...
public void show()
{

for(MessagePost message : messages) {
message.display();
System.out.println(); // empty line between posts

}

for(PhotoPost photo : photos) {
photo.display();
System.out.println(); // empty line between posts

}
}

}

Topic List
1. Social Network V1
2. Inheritance hierarchies
3. Social Network V2
4. Coding inheritance hierarchies

– Super and subclasses
– Using constructors in these hierarchies

5. Social Network V3
– Deeper hierarchies
– Advantages of using inheritance

6. Subtyping and Substitution
7. Polymorphic variables / Collections

– Includes casting, wrapper classes, autoboxing /unboxing

Inheritance hierarchies

Is-a

Topic List
1. Social Network V1
2. Inheritance hierarchies
3. Social Network V2
4. Coding inheritance hierarchies

– Super and subclasses
– Using constructors in these hierarchies

5. Social Network V3
– Deeper hierarchies
– Advantages of using inheritance

6. Subtyping and Substitution
7. Polymorphic variables / Collections

– Includes casting, wrapper classes, autoboxing /unboxing

Recap: Social Network V1 - Class diagram

Critique of Social Network V1

• Code duplication:
– MessagePost and PhotoPost classes very similar (large parts are identical)
– makes maintenance difficult/more work
– introduces danger of bugs through incorrect maintenance

• Code duplication in NewsFeed class as well.

Social Network V2 - Class diagram
v2

Social NetworkV2 - Using inheritance

Social NetworkV2 - Using inheritance

Superclass

Subclasses

Common attributes

Inherit superclass attributes
and add their own specific attributes.

extends

Social Network V2 – Inheritance Summary

• define one superclass
– Post

• define subclasses for
– MessagePost
– PhotoPost

• the superclass
– defines common attributes (via fields)

• the subclasses
– inherit the superclass attributes (fields)
– add other specific attributes (fields)

Topic List
1. Social Network V1
2. Inheritance hierarchies
3. Social Network V2
4. Coding inheritance hierarchies

– Super and subclasses
– Using constructors in these hierarchies

5. Social Network V3
– Deeper hierarchies
– Advantages of using inheritance

6. Subtyping and Substitution
7. Polymorphic variables / Collections

– Includes casting, wrapper classes, autoboxing /unboxing

Inheritance in Java - extends

public class Post
{

...
}

public class MessagePost extends Post
{

...
}

public class PhotoPost extends Post
{

...
}

no change here

change here

Superclass

public class Post
{

private String username;
private long timestamp;
private int likes;
private ArrayList<String> comments;

// constructor and methods omitted.
}

we define common fields in superclass

Subclasses
public class MessagePost extends Post
{

private String message;

// constructor and methods omitted.
}

public class PhotoPost extends Post
{

private String filename;
private String caption;

// constructor and methods omitted.
}we add subclass fields; inherit superclass fields

subclass objects will have all fields

public class Post
{

private String username;
private long timestamp;
private int likes;
private ArrayList<String> comments;

/**
* Initialise the fields of the post.
*/
public Post(String author)
{

username = author;
timestamp = System.currentTimeMillis();
likes = 0;
comments = new ArrayList<String>();

}

// methods omitted
}

Inheritance and Constructors
- superclass

public class MessagePost extends Post
{

private String message;

/**
* Constructor for objects of class MessagePost
*/

public MessagePost (String author, String text)
{

super(author);
message = text;

}

// methods omitted
}

Inheritance and Constructors
- subclass

subclass: must call superclass constructor!
Must take values for all fields that we want to initialise.

Superclass constructor call

• Subclass constructors must always contain a 'super' call.

• If none is written, the compiler inserts one (without parameters)
– works only, if the superclass has a constructor without parameters

• ‘super’ call must be the first statement in the subclass constructor.

Topic List
1. Social Network V1
2. Inheritance hierarchies
3. Social Network V2
4. Coding inheritance hierarchies

– Super and subclasses
– Using constructors in these hierarchies

5. Social Network V3
– Deeper hierarchies
– Advantages of using inheritance

6. Subtyping and Substitution
7. Polymorphic variables / Collections

– Includes casting, wrapper classes, autoboxing /unboxing

v3

Social Network V3 - Adding more item types

Social Network V3 - Deeper hierarchies

Topic List
1. Social Network V1
2. Inheritance hierarchies
3. Social Network V2
4. Coding inheritance hierarchies

– Super and subclasses
– Using constructors in these hierarchies

5. Social Network V3
– Deeper hierarchies
– Advantages of using inheritance

6. Subtyping and Substitution
7. Polymorphic variables / Collections

– Includes casting, wrapper classes, autoboxing /unboxing

Advantages of inheritance

Inheritance (so far) helps with:

• Avoiding code duplication
• Code reuse
• Easier maintenance
• Extendibility

public class NewsFeed
{

private ArrayList<Post> posts;

/**
* Construct an empty news feed.
*/
public NewsFeed()
{

posts = new ArrayList<Post>();
}

/**
* Add a post to the news feed.
*/
public void addPost(Post post)
{

posts.add(post);
}
...

}

Code is simplified
&

code duplication
in the client class is avoided!

REVISED NewsFeed
source code

/**
* Show the news feed. Currently: print the
* news feed details to the terminal.
*/

public void show()
{

for(Post post : posts) {
post.display();
System.out.println(); // Empty line ...

}
}

REVISED NewsFeed
source code

Topic List
1. Social Network V1
2. Inheritance hierarchies
3. Social Network V2
4. Coding inheritance hierarchies

– Super and subclasses
– Using constructors in these hierarchies

5. Social Network V3
– Deeper hierarchies
– Advantages of using inheritance

6. Subtyping and Substitution
7. Polymorphic variables / Collections

– Includes casting, wrapper classes, autoboxing /unboxing

Subtyping

Now, we have:
public void addPost(Post post)

We call this method with:
PhotoPost myPhoto = new PhotoPost(...);
feed.addPost(myPhoto);

First, we had:

public void addMessagePost(MessagePost message)
public void addPhotoPost(PhotoPost photo)

Subclasses and subtyping

• Classes define types.

• Subclasses define subtypes.

• Substitution:
– objects of subclasses can be used

where objects of supertypes are required.

Subtyping and assignment

Vehicle v1 = new Vehicle();
Vehicle v2 = new Car();
Vehicle v3 = new Bicycle();

subclass objects
may be assigned to
superclass variables

Subtyping and parameter passing
public class NewsFeed
{

public void addPost(Post post)
{

...
}

}

PhotoPost photo = new PhotoPost(...);
MessagePost message = new MessagePost(...);

feed.addPost(photo);
feed.addPost(message); subclass objects may be used as actual parameters

when a superclass is required.

Social Network V2 - Object diagram

NewsFeed object
holds a single mixed collection

Topic List
1. Social Network V1
2. Inheritance hierarchies
3. Social Network V2
4. Coding inheritance hierarchies

– Super and subclasses
– Using constructors in these hierarchies

5. Social Network V3
– Deeper hierarchies
– Advantages of using inheritance

6. Subtyping and Substitution
7. Polymorphic

a) Variables
b) Collections
– casting, wrapper classes, autoboxing /unboxing

7 a) Polymorphic variables

• Object variables in Java are polymorphic

– They can hold objects of

i. more than one type
ii. the declared type
iii. subtypes (of the declared type).

Social Network V2 – polymorphic ArrayList of Post

Casting

We can assign subtype to supertype (note arrow direction)!

But we cannot assign a supertype to subtype (cannot go against the arrows)!

c = (Car) v; //casting…correct (only if the vehicle really is a Car!)

Vehicle v;
Car c = new Car();

v = c; // correct (car is-a vehicle)

c = v; // compile-time error!

Without (CASTING)

Casting

• An object type in parentheses - ().
• Used to overcome 'type loss'.
• The object is not changed in any way.
• A runtime check is made to ensure the object really is of that type:

– ClassCastException if it isn't!

• Use it sparingly.

The Object class

All classes inherit from Object.

Topic List
1. Social Network V1
2. Inheritance hierarchies
3. Social Network V2
4. Coding inheritance hierarchies

– Super and subclasses
– Using constructors in these hierarchies

5. Social Network V3
– Deeper hierarchies
– Advantages of using inheritance

6. Subtyping and Substitution
7. Polymorphic

a) Variables
b) Collections

• Casting
• wrapper classes,
• autoboxing /unboxing

7 b) Polymorphic collections

• All collections are polymorphic.

• The elements could simply be of type Object.

public void add (Object element)

public Object get (int index)

• Usually avoided…
– we typically use a type parameter with the collection.

7 b) Polymorphic collections

• With a type parameter the degree of polymorphism:

ArrayList<Post> is limited.
• Collection methods are then typed.

• Without a type parameter,

ArrayList<Object> is implied.
• Likely to get an “unchecked or unsafe operations” warning.
• More likely to have to use casts.

Collections and primitive types

• Potentially, all objects can be entered into collections
– because collections can accept elements of type Object
– and all classes are subtypes of Object.

• Great! But what about the primitive types:
int, boolean, etc.?

Wrapper classes

• Primitive types are not object types.
Primitive-type values must be wrapped in objects, to be stored in a collection!

• Wrapper classes exist for all primitive types:

Note that there is no simple mapping rule from primitive name to wrapper name!

primitive type

int
float
char
...

wrapper class

Integer
Float
Character
...

unwrap it
…
int value = iwrap.intValue();

Wrapper classes

int i = 18;

Integer iwrap = new Integer(i); wrap the value

In practice, autoboxing and unboxing mean we don't often have to do this explicitly

Autoboxing and unboxing
private ArrayList<Integer> markList;
…
public void storeMark(int mark)
{

markList.add(mark);
}

int firstMark = markList.get(0);

autoboxing

unboxing Or explicitly unwrapping the first mark in the list markList.get(0)

i.e. we don’t have to worry about explicitly wrapping mark above

Summary
• if you use collections (e.g. ArrayList, Map, Set, etc.)

of a primitive type (int, long, boolean, char, float, double),
you will need to use wrapper classes (Integer, Boolean, Character, Float, Double)
in the declaration of the collection

e.g. private ArrayList<Integer> markList;

• To add an int to this ArrayList of integers, we would wrap the int by using the Integer()
constructor method.

• To remove an int from this ArrayList of integers, we would unwrap the int by using the
intValue() method of the Integer wrapper class.

• Autoboxing and unboxing removes the need to use the wrap and unwrap methods in the
wrapper class as it’s handled automatically.
– However it is less efficient than doing it explicitly. If performance becomes an issue, you would revert

to explicitly using the wrapping and unwrapping methods rather than relying on autoboxing and
unboxing.

Summary

a) Polymorphic Variables
b) Polymorphic Collections

• casting,
• wrapper classes,
• autoboxing /unboxing

Review

• Inheritance allows the definition of classes as extensions of other classes.
• Inheritance

– avoids code duplication
– allows code reuse
– simplifies the code
– simplifies maintenance and extending

• Variables can hold subtype objects.
• Subtypes can be used wherever supertype objects are expected

(substitution).

