Inheritance

Exploring Polymorphism

Produced Dr. Siobhdn Drohan
by: Mr. Colm Dunphy

Mr. Diarmuid O’Connor
Dr. Frank Walsh

@ Waterford Institute of Technology Department of Computing and Mathematics
)

% INSTITIOID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/
\a__.,(



Lectures and Labs

* This weeks lectures and labs are based on examples in:

— Objects First with Java - A Practical Introduction using BlueJ, © David
J. Barnes, Michael Koélling (https://www.bluej.org/objects-first/)



https://www.bluej.org/objects-first/

Topic List

1. Method polymorphism
— display()

2. Static and dynamic type

3. Overriding

m)| 4. Dynamic method lookup

5. Protected access



Dynamic method lookup
1) Inheritance but no overriding

v1. display(); Post

| PhotoPost
PhotoPost v1i;
— 7
/_\ instance of

: PhotoPost

The inheritance hierarchy is ascended,
searching for a match.




Dynamic method lookup
2) Polymorphism and overriding.

v1. display();

Post vi;

—— ),
instance of
, 7
'

display

Post |

PhotoPost
display :

Bl

The ‘first’ version found is used.




Dynamic method lookup summary

The variable is accessed.

The object stored in the variable is found.

The class of the object is found.

The class is searched for a method match.

If no match is found, the superclass is searched.

This is repeated until a match is found, or the class hierarchy is exhausted.

Overriding methods take precedence
— i.e. stop when you find a match.

N o Uk



Super call in methods

 Overridden methods are hidden

— but we often still want to be able to call them explicitly.

e An overridden method
can be called from the method that overrides it

— super . .method (.. .)
— Recall we used super in our constructors.




e.g. calling an overridden method

public void display()
{
super .display () ;
System.out.println(” [" + filename + "]");
System.out.println(" " + caption);




Method polymorphism

 We have been discussing polymorphic method dispatch.

* A polymorphic variable can store objects of varying types.

 Method calls are polymorphic.
— The actual method called depends on the dynamic object type.



The instanceof operator

‘ instanceof is used to determine the dynamic type.

* It can recover ‘lost’ type information.

* |t usually precedes assighment
with a cast to the dynamic type:

N

if (post instanceof MessagePost?\i_;

MessagePost msg =<Z§§E%agePost) ?EEEZ>

.. €.g. then access MessagePost methods via msg ..




Recall the Object class...

java.lang

Class Object

java.lang.Object

public class Object

Class Object is the root of the class hierarchy. Every class has Object as a superclass. All
objects, including arrays, implement the methods of this class.

Since:

JDK1.0




Recall the Object class...

. . Object
All classes inherit from
Object.
java.lang String Person —— Vehicle
Class Object TR
) ) Car Bicycle
java.lang.Object

public class Object

Class Object is the root of the class hierarchy. Every class has Object as a superclass. All
objects, including arrays, implement the methods of this class.

Since:
JDK1.0




Methods in
Object are

inherited by all
classes.

Any of these may
be overridden.

—

Modifier and Type

Method and Description

protected Object

boolean

protected void

Class<?>

int

void

void

String

void

void

void

clone()

Creates and returns a copy of this object.

equals(Object obj)

Indicates whether some other object is "equal to" this one.
finalize()

Called by the garbage collector on an object when garbage collection
determines that there are no more references to the object.

getClass()

Returns the runtime class of this Object.

hashCode()

Returns a hash code value for the object.

notify()

Wakes up a single thread that is waiting on this object's monitor.
notifyAll()

Wakes up all threads that are waiting on this object's monitor.
toString()

Returns a string representation of the object.

wait()

Causes the current thread to wait until another thread invokes the
notify() method or the notifyAll() method for this object.

wait(long timeout)
Causes the current thread to wait until either another thread invokes the

notify() method or the notifyAll() method for this object, or a
specified amount of time has elapsed.

wait(long timeout, int nanos)

Causes the current thread to wait until another thread invokes the
notify() method or the notifyAll() method for this object, or some
other thread interrupts the current thread, or a certain amount of real
time has elapsed.




Modifier and Type

Method and Description

protected Object

boolean

protected void

Class<?>

int

void

void

void

clone()

Creates and returns a copy of this object.

equals(Object obj)

Indicates whether some other object is "equal to" this one.
finalize()

Called by the garbage collector on an object when garbage collection
determines that there are no more references to the object.

getClass()

Returns the runtime class of this Object.

hashCode()

Returns a hash code value for the object.

notify()

Wakes up a single thread that is waiting on this object's monitor.
notifyAll()

Wakes up all threads that are waiting
toString()

on this object's monitor.

Returns a string representation of the object.

wait()
Causes the current thread to wait until another thread invokes the

] AN Ll al Ll P ) PR VRN L1 1L

The toString method is commonly overridden:

public String toString()

this object.

er thread invokes the
this object, or a

~ad invokes the

Returns a string representation of the object. this object, or some

ain amount of real

time has elapsed.




Overriding toStringin Post

public String toString ()
{

String text = username + "\n" + timeString(timestamp) ;

if (likes > 0) {
text += " - " + likes + " people like this.\n";
}

else {
text += "\n";

if (comments.isEmpty()) {
return text + " No comments.\n";
}
else {
return text + " " 4+ comments.size () +

" comment (s). Click here to view.\n";




Overriding toString

* Explicit print methods

can often be omitted from a class:
System.out.println (post.toString())

* Callsto println with just an object automatically result in
toString () being called:

System.out.println (post) ;

 We've seen how we can override how the object is printed
by creating a toString () method



Any
Questions?




