
More Sophisticated Behaviour

Produced
by:

Department of Computing and Mathematics
http://www.wit.ie/

Technical Support System V3.0

Dr. Siobhán Drohan
Mr. Colm Dunphy
Mr. Diarmuid O’Connor
Dr. Frank Walsh

Java Collections Framework:

Topic List
1. Recap: Technical Support System V2

2. Technical Support System V3
– Overview

• 3 classes:
– Responder
– InputReader
– SupportSystem

3. Class Development
– Responder class

• Generating a related response
• ArrayList
• Map and HashMap

– InputReader class
• Tokenizing Strings
• Set and HashSet

– Responder class
• Finishing the class

– SupportSystem class
• A small change.

Maps: (key=value) pairs

• Maps are collections
– that contain pairs of values.

• Pairs consist of :
– key
– value.

• Lookup works by supplying a key, and retrieving a value.
– E.g. telephone book
• use the name to look up a phone number.

Key Value

Word Response

Using Maps

• A MAP with String keys & String values.

"Charles Nguyen"

:HashMap

"(531) 9392 4587"

"Lisa Jones" "(402) 4536 4674"

"William H. Smith" "(998) 5488 0123"

ArrayList Vs Map

ArrayList
1. each entry stores

one object

2. you use an integer index
to lookup the object

Map
1. each entry has a

pair of objects (key=value).

2. you use the key object
to lookup the value object

More on Map

• Maps are ideal for one-way lookup using the key.

• Using Maps to Look up a value associated with a key is easy!
– However, reverse lookup is not so easy (finding a key for a value).

• E.g. looking up a number in the phonebook, to find the persons name

• A map cannot contain duplicate keys;
– A key can map to at most one value.

• Java provides 4 Map classes:
– We will use the HashMap class.

HashMap
HashTable
TreeMap
Linked HashMap

HashMap Methods

Using HashMap
HashMap <String, String> phoneBook = new HashMap<String, String>();

phoneBook.put("Charles Nguyen", "(531) 9392 4587");
phoneBook.put("Lisa Jones", "(402) 4536 4674");
phoneBook.put("William H. Smith", "(998) 5488 0123");

String phoneNumber = phoneBook.get("Lisa Jones");
System.out.println(phoneNumber);

"Charles Nguyen"

:HashMap

"(531) 9392 4587"

"Lisa Jones" "(402) 4536 4674"

"William H. Smith" "(998) 5488 0123"

Console Output:

(402) 4536 4674

Lookup

// phoneBook is a hashmap of pairs of String objects.

HashMap in Tech Support System V3

In the Responder class,
we will now use HashMap to store “Key-Value” pairs
for context-sensitive responses e.g.

Key Value

windows This is a known bug to do with the Windows operating system. Please report it to Microsoft.
There is nothing we can do about this.

slow I think this has to do with your hardware. Upgrading your processor should solve all performance
problems. Have you got a problem with our software?

bug Well, you know, all software has some bugs. But our software engineers are working very hard to
fix them. Can you describe the problem a bit further?

performance Performance was quite adequate in all our tests. Are you running any other processes in the
background?

private void fillResponseMap()
{

responseMap.put("crash",
"Well, it never crashes on our system. It must have something\n" +
"to do with your system. Tell me more about your configuration.");

responseMap.put("crashes",
"Well, it never crashes on our system. It must have something\n" +
"to do with your system. Tell me more about your configuration.");

responseMap.put("slow",
"I think this has to do with your hardware. Upgrading your processor\n" +
"should solve all performance problems. Have you got a problem with\n" +
"our software?");

responseMap.put("performance",
"Performance was quite adequate in all our tests. Are you running\n" +
"any other processes in the background?");

responseMap.put("bug",
"Well, you know, all software has some bugs. But our software engineers\n" +
"are working very hard to fix them. Can you describe the problem a bit\n" +
"further?");

responseMap.put("buggy",
"Well, you know, all software has some bugs. But our software engineers\n" +
"are working very hard to fix them. Can you describe the problem a bit\n" +
"further?");

responseMap.put("windows",
"This is a known bug to do with the Windows operating system. Please\n" +
"report it to Microsoft. There is nothing we can do about this.");

// and so on…
}

V3.0 Responder changes
(in red)

private HashMap<String, String> responseMap;

fillResponseMap()

• Whenever someone enters the word “crashes”,
– we can do a lookup and print the attached response.

responseMap.put (
"crashes",

"Well, it never crashes on our system. It must have something\n"
+ "to do with your system. Tell me more about your configuration.");

import java.util.HashMap;
import java.util.ArrayList;
import java.util.Random;

public class Responder
{

// Used to map key words to responses.
private HashMap<String, String> responseMap;

// Default responses to use if we don't recognise a word.
private ArrayList<String> defaultResponses;

// For random responses
private Random randomGenerator;

public Responder()
{

responseMap = new HashMap<String, String>();
fillResponseMap();
defaultResponses = new ArrayList<String>();
fillDefaultResponses();
randomGenerator = new Random();

}

V3.0 Responder changes
(in red)

private void fillDefaultResponses() {

defaultResponses.add("That sounds odd. Could you describe that problem in more detail?");
defaultResponses.add("No other customer has ever complained about this before. \n" +

"What is your system configuration?");
defaultResponses.add("That sounds interesting. Tell me more...");
defaultResponses.add("I need a bit more information on that.");
defaultResponses.add("Have you checked that you do not have a dll conflict?");
defaultResponses.add("That is explained in the manual. Have you read the manual?");
defaultResponses.add("Your description is a bit wishy-washy. Have you got an expert\n" +

"there with you who could describe this more precisely?");
defaultResponses.add("That's not a bug, it's a feature!");
defaultResponses.add("Could you elaborate on that?");

}

private String pickDefaultResponse()
{

// Pick a random number for the index in the default response list.
// The number will be between 0 (inclusive) and the size of the list (exclusive).
int index = randomGenerator.nextInt(defaultResponses.size());
return defaultResponses.get(index);

}

V3.0 Responder changes
(in red)

For what a default
random response

Next we look at the
context sensitive

response

