Playlist Models KA

@F
Lo

= e—

Playlist Models I

JAREE

Review the structure and
manipulation of the Playlist
Model

Playlist Model

Member Playlist

Song

Entity Classes: Playlist + Song

@Entity
public class Playlist extends Model

{
public String title;
public int duration;

@OneToMany(cascade = CascadeType.ALL)
public List<Song> songs = new ArrayList<Song>();

public Playlist(String title, int duration)

{
this.title = title;
this.duration = duration;

}
}

Playlist

@Entity
public class Song extends Model

{
public String title;
public String artist;
public int duration;

public Song(String title, String artist, int duration)

{
this.title = title;
this.artist = artist;
this.duration = duration;
¥

}

Song

Entity Class: Member

@Entity

public class Member extends Model

{
public String firstname;
public String lastname;
public String email;
public String password;

@OneToMany(cascade = CascadeType.ALL)
public List<Playlist> playlists = new ArrayList<Playlist>();

public Member(String firstname, String lastname, String email, String password)

{

this.firstname = firstname;
this.lastname = lastname;
this.emalil = email;
this.password = password;

I3
public static Member findByEmail(String email)
{
return find("email", email).first();
I3
public boolean checkPassword(String password)
{
return this.password.equals(password);
s

}

- playlist
5 docviewer ~/dev/play-1.5.0/modu
= playlist ~/repos/wit-hdip-comp-s
app
controllers
models
c Member
c Playlist
c Song
views
c Bootstrap
conf
= application.conf

| dependencies.yml
|messages
= routes

Song(sl):
title: Piano Sonata No. 3
artist: Beethoven
duration: 5

Song(s2):
title: Piano Sonata No. 7
artist: Beethoven
duration: 6

Song(s3):
title: Piano Sonata No. 10
artist: Beethoven
duration: 8

Song(s4):
title: Piano Concerto No.
artist: Beethoven
duration: 8

Song(s5):
title: Piano Concertos No.
artist: Beethoven

Playlist(pl):
title: Bethoven Sonatas
duration: 19
songs:
- sl
- s2
- s3

Playlist(p2):
title: Bethoven Concertos
duration: 23
songs:
- 54
- S5

Member(ml):
firstname: homer
lastname: simpson
email: homer@simpson.com
password: secret
playlists:
_pl
_p2

27

17

data.yml

Member

Playlist

Song

Song(sl):
title: Piano Sonata No. 3
artist: Beethoven
duration: 5

Song(s2):
title: Piano Sonata No. 7
artist: Beethoven
duration: 6

Song(s3):
title: Piano Sonata No. 10
artist: Beethoven
duration: 8

Song(s4):
title: Piano Concerto No.
artist: Beethoven
duration: 8

Song(s5):
title: Piano Concertos No.
artist: Beethoven

Playlist(pl):
title: Bethoven Sonatas
duration: 19
songs:
- sl
- s2
- s3

Playlist(p2):
title: Bethoven Concertos
duration: 23
songs:
- 54
- s5

Member(ml):
firstname: homer
lastname: simpson
email: homer@simpson.com
password: secret
playlists:
_pl
_p2

27

17

Logical View

Physical View http://localhost:9000/@db

f jdbc:h2:menm: p'am QECT * FROM MEMBER; Core M Ode|\

member
ID EMAIL FIRSTNAME |[LASTNAME PASSWORD

+ : email 8 |homer@simpson.com homer simpson secret ObJeCtS

+ [firstname

+ [lastname SELECT * FROM PLAYLIST; SELECT * FROM SONG;

@ [password ID |DURATION |TITLE ID ARTIST |DURATION TITLE

+ |%, Indexes 6 |19 Bethoven Sonatas 1 |Beethoven 5 Piano Sonata No. 3
S = member_playlist 7 123 Bethoven Concertos 2 Beethoven 6 Piano Sonata No. 7

+ [member._id | | 3 | Beethoven 8 Piano Sonata No. 10

+ [playlists_id 4 |Beethoven 8 Piano Concerto No. 27

|, Indexes k 5 |Beethoven 0 Piano Concertos No. 17 J
=l [playlist

+ U id

+ [duration

+ | title
+ |%, Indexes f SELECT * FROM MEMBER_PLAYLIST; \
T i Member -> PIayIIS’[MEMBER ID |PLAYLISTS ID

= . playlist_song
+ [playlist _id
+ [zonygs_id mapplﬂg table 8 :

+ |%, Indexes
SELECT * FROM PLAYLIST_SONG;

- }S:Onii PLAYLIST ID |SONGS_ID
+ [artist . 6 1
+ [duration PlayIISt -> SOng 6 2
+ [ftitle ! -t bl 6 3
k\; 1 Indexes J mapping table ° ;
_ A— /

Manipulating Playlist

public class Dashboard extends Controller

{

public static void index()

{
Member member = Accounts.getlLoggedInMember();
List<Playlist> playlists = member.playlists;
render ("dashboard.html"™, playlists);

}

public static void addPlaylist (String title)

{
Member member = Accounts.getlLoggedInMember();
Playlist playlist = new Playlist (title, 0);
member.playlists.add(playlist);
member.save();
redirect ("/dashboard");

s

public static void deletePlaylist (Long id)

{
Member member = Accounts.getlLoggedInMember();
Playlist playlist = Playlist.findById(id);
member.playlists.remove(playlist);
member.save();
playlist.delete();
redirect ("/dashboard");

Display logged In
members playlists

Add a new playlist

Delete a playlist

Manipulating Songs

public class PlaylistCtrl extends Controller
{

public static void index(Long id)

{
Playlist playlist = Playlist.findById(id);
render("playlist.html", playlist);

s

public static void addSong(Long id, String title,
String artist, int duration)
{

Song song = new Song(title, artist, duration);
Playlist playlist = Playlist.findById(id);
playlist.songs.add(song);
playlist.save();
redirect ("/playlists/" + id);

}

public static void deletesong (Long id, Long songid)
{

Playlist playlist = Playlist.findById(id);

Song song = Song.findById(songid);

playlist.songs.remove(song);

playlist.save();

song.delete();

render("playlist.html", playlist);

Display a playlist
(given id)

add a song to a
playlist

delete a song from
a playlist

