
Playlist Models

�1

Playlist Model

�2

@Entity
public class Playlist extends Model
{
 public String title;
 public int duration;

 @OneToMany(cascade = CascadeType.ALL)
 public List<Song> songs = new ArrayList<Song>();

 public Playlist(String title, int duration)
 {
 this.title = title;
 this.duration = duration;
 }
}

@Entity
public class Song extends Model
{
 public String title;
 public String artist;
 public int duration;

 public Song(String title, String artist, int duration)
 {
 this.title = title;
 this.artist = artist;
 this.duration = duration;
 }
}

Entity Classes: Playlist + Song

�3

@Entity
public class Member extends Model
{
 public String firstname;
 public String lastname;
 public String email;
 public String password;

 @OneToMany(cascade = CascadeType.ALL)
 public List<Playlist> playlists = new ArrayList<Playlist>();

 public Member(String firstname, String lastname, String email, String password)
 {
 this.firstname = firstname;
 this.lastname = lastname;
 this.email = email;
 this.password = password;
 }

 public static Member findByEmail(String email)
 {
 return find("email", email).first();
 }

 public boolean checkPassword(String password)
 {
 return this.password.equals(password);
 }
}

Entity Class: Member

�4

Song(s1):
 title: Piano Sonata No. 3
 artist: Beethoven
 duration: 5

Song(s2):
 title: Piano Sonata No. 7
 artist: Beethoven
 duration: 6

Song(s3):
 title: Piano Sonata No. 10
 artist: Beethoven
 duration: 8

Song(s4):
 title: Piano Concerto No. 27
 artist: Beethoven
 duration: 8

Song(s5):
 title: Piano Concertos No. 17
 artist: Beethoven

Playlist(p1):
 title: Bethoven Sonatas
 duration: 19
 songs:
 - s1
 - s2
 - s3

Playlist(p2):
 title: Bethoven Concertos
 duration: 23
 songs:
 - s4
 - s5

Member(m1):
 firstname: homer
 lastname: simpson
 email: homer@simpson.com
 password: secret
 playlists:
 - p1
 - p2

data.yml

�5

Song(s1):
 title: Piano Sonata No. 3
 artist: Beethoven
 duration: 5

Song(s2):
 title: Piano Sonata No. 7
 artist: Beethoven
 duration: 6

Song(s3):
 title: Piano Sonata No. 10
 artist: Beethoven
 duration: 8

Song(s4):
 title: Piano Concerto No. 27
 artist: Beethoven
 duration: 8

Song(s5):
 title: Piano Concertos No. 17
 artist: Beethoven

Playlist(p1):
 title: Bethoven Sonatas
 duration: 19
 songs:
 - s1
 - s2
 - s3

Playlist(p2):
 title: Bethoven Concertos
 duration: 23
 songs:
 - s4
 - s5

Member(m1):
 firstname: homer
 lastname: simpson
 email: homer@simpson.com
 password: secret
 playlists:
 - p1
 - p2

Logical View

�6

http://localhost:9000/@db

Core Model
Objects

Member -> Playlist
mapping table

Playlist -> Song
mapping table

Physical View

�7

Manipulating Playlist

public class Dashboard extends Controller
{
 public static void index()
 {
 Member member = Accounts.getLoggedInMember();
 List<Playlist> playlists = member.playlists;
 render ("dashboard.html", playlists);
 }

 public static void addPlaylist (String title)
 {
 Member member = Accounts.getLoggedInMember();
 Playlist playlist = new Playlist (title, 0);
 member.playlists.add(playlist);
 member.save();
 redirect ("/dashboard");
 }

 public static void deletePlaylist (Long id)
 {
 Member member = Accounts.getLoggedInMember();
 Playlist playlist = Playlist.findById(id);
 member.playlists.remove(playlist);
 member.save();
 playlist.delete();
 redirect ("/dashboard");
 }
}

Display logged in
members playlists

Add a new playlist

Delete a playlist

�8

Manipulating Songs

public class PlaylistCtrl extends Controller
{
 public static void index(Long id)
 {
 Playlist playlist = Playlist.findById(id);
 render("playlist.html", playlist);
 }

 public static void addSong(Long id, String title,
 String artist, int duration)
 {
 Song song = new Song(title, artist, duration);
 Playlist playlist = Playlist.findById(id);
 playlist.songs.add(song);
 playlist.save();
 redirect ("/playlists/" + id);
 }

 public static void deletesong (Long id, Long songid)
 {
 Playlist playlist = Playlist.findById(id);
 Song song = Song.findById(songid);
 playlist.songs.remove(song);
 playlist.save();
 song.delete();
 render("playlist.html", playlist);
 }
}

Display a playlist
(given id)

add a song to a
playlist

delete a song from
a playlist

�9

